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Abstract

From alternations to ordered rules: A system for learning Derivational Phonology

Marc Simpson

This work presents a computational rule learner tasked with inferring underlying

forms and ordered rules from phonological paradigms akin to those found in tradi-

tional pen and paper analyses. The scheme being proposed is a batch learner capable

of analysing surface alternations and hypothesising ordered derivations compatible

with them in order to create an explicit mapping from UR to SR.

We shall refer to both the competence of an idealised speaker-hearer (in keeping

with traditional generative linguistic theory) and the conscious methods employed by

the phonologist in the course of analysing data sets.

The fundamental axiom of this model is that the child has memorised the relevant

surface forms (as they appear in the paradigm) alongside the appropriate semantic

information in order to allow them to set up paradigmatic structures for the purpose of

inferring both underlying forms and phonological rules simultaneously. The mapping

from minimal pairs to underlying forms is the primary conduit to inferring the rules

themselves.

A full code listing for the rule learner, written in Prolog, is available.
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Chapter 1
Foundations

As a means of introducing the topic of automated phonological inference, it is worth

returning to the foundational principles of phonology beginning with the theoretical

motivation for our conception of representations and the rules that map between

them. Having established such a foundation, we will then be able to theoretically and

formally ground the computational model at the heart of this thesis.

1.1 Rejecting the null hypothesis

The context for any discussion of phonological grammar is the (common-sense) notion

that the pronunciations of words are simply lexicalised—memorised—as they are

acquired. While this notion fails to stand up to scrutiny and is, indeed, the position

against which generative phonological theory is situated, it is worth clearly stating

before proceeding with a discussion of approaches to distributional regularity and

productivity in the phonological component of mental grammar.

A succinct but informative discussion of the null hypothesis can be found in one

of the seminal texts of modern phonology, Kenstowicz & Kisseberth’s Generative

Phonology:
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There is no principle of English phonology which predicts that the word

cab is composed of three sounds k, æ, b, appearing in this particular order.

In order to know how to pronounce this word, one must simply wait to

hear it pronounced by someone else who already knows its pronunciation.

We thus might assume that once the native speaker hears a given word

pronounced, he simply memorizes what sounds make up the word and

in what order those sounds are pronounced. This information would be

stored in the lexicon of the speaker’s grammar. [. . . ]

Thus no phonological component of the grammar would be required: The

syntactic rules, which specify the order of the morphemes in the sentence,

and the lexicon, which specifies the pronunciation of each morpheme,

would jointly produce a pronunciation for each sentence. Let us refer to

this view of pronunciation as the null hypothesis. (Kenstowicz & Kisseberth,

1979, p. 26)

Of course, the past fifty years of research into the human language faculty directly

contradict this null hypothesis—be it in the syntactic context where data from binding

and movement provide compelling evidence for a generative aspect to human linguistic

cognition, or in (morpho-)phonology where distributional regularities are observable

(and analysable through the interaction of simple abstractions of sound-changing

processes) and empirically verifiable through simple tests of linguistic competence

(Berko, 1958). Hale and Reiss (2008) present four traditional arguments against the

null hypothesis and for generativity as it relates to the phonological component of

grammar. These are: distributional regularities, evidence from alternations, the wug

test (mentioned above) and borrowing (loanwords).

Distributional regularities are the currency of phonology: they are the regular,
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tacit sound patterns found in a particular language. Take, for example, the case of

flapping in North American English where t and R are allophones in complementary

distribution. When t appears underlyingly between two vowels where the second is

unstressed, t surfaces as a flap. For example:

(1.1)
UR atom atom-ic

SR a[R]om a[t]omic

Do we wish to say that the speaker has stored two distinct pronunciations (a[R]om

and a[t]omic) or should we offer a more principled explanation of this distinction—

starting with the predictable application of this alternation? The answer chosen by

generative phonologists—due to the compelling regularity of such patterns—is the

latter. This case of allophony can be captured by a simple flapping rule,

t → R / V V[−stress]

which is accompanied by a prediction: if the environment for this rule is met in a

different form (that is, a form in which t appears between two vowels where the second

is unstressed), including those novel or borrowed, flapping should still be evidenced.

Put differently: we expect this rule to apply every time its environment is met and

that application is not contingent on the current list of forms stored in the speaker’s

lexicon.

1.1.1 Neutralisation

Inferring underlying representations from alternating surface forms can be tricky.

Consider the following data set from a toy language:
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(1.2)

Surface Form Gloss

a. gap a dog

b. gaba some dogs

c. gab a cat

d. gaba some cats

This set of forms exhibits neutralisation—forms that are stored differently under-

lyingly can be pronounced identically (evidenced by ‘some dogs’ vs. ‘some cats’). The

question raised for the phonologist analysing such a data set as well as for the child

attempting to acquire the correct underlying forms is the following: how to figure out

the correct underlying representation for ‘dog’ and ‘cat’.

To help solve this problem, we shall propose the two principles provided in (1.3):

(1.3) 1. If a form does not alternate on the surface, infer that the underlying form

is the same as the surface representation;

2. If a form does alternate on the surface, on the other hand, the underlying

form should be selected from one of the surface alternants.

• In order to select the correct surface alternant, reference must be

made to other forms that have already been inferred.

To illustrate, let us apply these principles to an analysis of the form in (1.2). The

first condition states that where a form fails to alternate, we can infer that to be the

underlying form. Notice that whereas the second consonant in ‘dog’ exhibits a p ∼ b

alternation the surface forms for ‘cat’ are consistent. Principle (1) tells us that the

root for ‘cat’ should be inferred as gab. Turning to principle (2) and ‘dog’, it is clear

that we need to pick between ‘gap’ and ‘gab’. If we choose the same form, gab, for

‘dog’ we encounter a problem. In identical environments, identical underlying forms
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surface differently. This is logically inconsistent and results in an incorrect inference

for ‘dog’. If we instead select gap—a step still compatible with (2)—we no longer

run into this problem; what remains to be shown are the rules governing the p ∼ b

alternation itself.

Having chosen our underlying representations, we can propose phonological rules

to generate the correct surface forms. Where there is no alternation, nothing needs

to be accounted for and so we can turn immediately to the form for ‘dog’, gap. This

yields the following situation,

(1.4)

Underlying Form Rule Surface Form

a. gap – gap

b. gap-a ? gab-a

A number of compatible rules can be proposed; for the sake of simplicity we shall

offer just three:

1. /p/ → [ +voice ] / a

2. /p/ → [ +voice ] / a

3. /p/ → [ +voice ] / a a

Since the underlying form has been inferred as gap, we need a rule to rewrite

p → b; here we have already gone one step further and proposed a featural analysis—

p is voiced either (i) before a, (ii) after a or (iii) between as. We could extend this still

further by claiming that the voicing environment is intervocalic and that specifying

this environment as a is too specific. This is not a question we shall be dwelling

on, however; the central concern here is sketching the problem of neutralisation,

demonstrating a set of principles for proceeding with an analysis and outputting a

set of possible rules. This is exactly the function of the rule learner that we shall be

proposing below.
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Given the above discussion it should be clear that the task of the theoretical lin-

guist interested in acquisition of language and computation over linguistic space is to

provide an appropriate account both for the primitives over which computation takes

place and the processes that employ them. Our goal is to show that neutralisation

problems like the one posed above can be solved by a system that operates according

to the principles in (1.3).

1.2 Situating phonology biolinguistically

Once the null hypothesis has been rejected along the grounds outlined in (1.1), our

next step has to be an inquiry into the ontology of phonological representation and

transformation: what is the nature of stored forms and how do these relate to the

distribution of sounds in a given language? What sort of model elegantly captures

what we know about language?

1.2.1 Substance-free phonology

This project is underpinned by a commitment to a substance-free approach to phonol-

ogy.

We propose that it is useful to conceive of a grammar as a relationship be-

tween (a) a set of symbols (entities like features and variables; constituents

like syllables, feet, NPs) and (b) a set of computations (operations whose

operands are drawn from the set of symbols, such as concatenation and

deletion). The issue of substance arises only with respect to the set of

symbols, and for the sake of simplicity we restrict ourselves to the set

of phonological primitives known as distinctive features and to the rep-
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resentations that can be defined as combinations of distinctive features.

(Hale & Reiss, 2000, p. 157)

The implications of this methodology are as follows,

The conclusion we wish to draw from the above examples and many others

like them is that the best way to gain an understanding of the computa-

tional system of phonology is to assume that the substance of phonological

entities is never relevant to how they are treated by the computational

system, except in arbitrary, stipulative ways. . . . If our goal as generative

linguists is to define the set of computationally possible human grammars,

“universal tendencies” are irrelevant to that enterprise. We propose ex-

tending the Saussurean notion of the arbitrary nature of linguistic signs

to the treatment of phonological representations by the phonological com-

putational system. Phonology is not and should not be grounded in pho-

netics since the facts that phonetic grounding is meant to explain can be

derived without reference to phonology. (Hale & Reiss, 2000, p. 157)

We shall return to this lack of phonetic grounding once our scheme has been

presented further.

1.3 I-Language, Features and UG

By focusing on I-Language as our object of study—and bearing in mind the points al-

ready addressed regarding substance (or rather its lack) in phonological formalisms—

we now need to concretise the fundamental theoretical principles at play before ad-

dressing the question of how we might go about instantiating these principles in a

computational model for the purpose of testing and exploring their implications.
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1.3.1 Parsing and assumptions

We assume that the child has the already parsed acoustic input into featural repre-

sentations; the capacity to do so can be attributed to properties of UG whereby raw

acoustic signals can be transduced and mapped onto a discrete selection of binary

features.

As such, representations are supposed to be richly specified relative to the base

feature set (formally: arbitrary in nature). Consequently our approach begins with

surface forms that can be compared with respect to their feature specifications rather

than necessitating a comparison first on a phonemic level.

1.4 Optimality Theory: Divergence

The dominant mode of phonological theorising and grammar construction since the

mid-1990s has been Optimality Theory (OT) built on the original formulation in

Prince & Smolensky (1993).

OT differs from Derivational Phonology in two important respects. Firstly, Op-

timality Theory favours parallel computation for the evaluation of surface forms.

Secondly, the OT model of computation in both the parsing and generation phases

is fundamentally constraint-driven rather than process-orientated.

1.5 Modelling

Before proceeding with a discussion of the software being presented in this thesis—

which deals with both phonological acquisition and the nature of computation once

this acquisition phase is complete—it is first necessary to understand what is meant

by a computational model, how it relates to phonological formalism and what, ex-
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actly, the use of an implementation is with respect to developing phonological theory

further. These questions hinge on how one goes about proceeding with an abstract

and formal science of mind—in other words, the operating procedures of cognitive

science itself. Are we required to make claims about the neural or psycholinguistic

aspect when constructing a theory of phonology? Does learning need to be informed

by developments in neuroscience?

By widening our linguistic perspective to include results from the field of vision,

we can address these questions by referencing David Marr’s work on the cognitive

foundations of visual competence. This is one of the clearest discussions of the rela-

tionship between different levels of theory construction, analysis and implementation.

1.5.1 The world according to Marr

In his work on vision, Marr outlines three information-processing levels. This discus-

sion is worth repeating in full for it serves to clarify the context in which building an

automated rule learner falls—both in relation to theoretical work and recent trends

in automating learning through the use of neural networks in Optimality Theory.

We can summarize our discussion in something like the manner shown

in [the table in (1.5)], which illustrates the different levels at which an

information-processing device must be understood before one can be said

to have understood it completely. At one extreme, the top level, is the

abstract computational theory of the device, in which the performance of

the device is characterized as a mapping from one kind of information to

another, the abstract properties of this mapping are defined precisely, and

its appropriateness and adequacy for the task at hand are demonstrated.

In the center is the choice of representation for the input and output and
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the algorithm to be used to transform one into the other. And at the

other extreme are the details of how the algorithm and representation

are realized physically—the detailed computer architecture, so to speak.

These three levels are coupled, but only loosely. The choice of an algorithm

is influenced for example, by what it has to do and by the hardware in

which it must run. But there is a wide choice available at each level, and

the explication of each level involves issues that are rather independent of

the other two. (Marr, 1982, p. 24–5)

The figure that Marr mentions is reproduced below as (1.5),

(1.5) Levels of analysis, from Marr (1982)

Computational Representation Hardware

theory and algorithm implementation

What is the goal1 of

computation, why is it

appropriate and what

is the logic of the strat-

egy by which it can be

carried out?

How can this compu-

tational theory be im-

plemented? In partic-

ular, what is the repre-

sentation for the input

and output, and what

is the algorithm for the

transformation?

How can representa-

tion and algorithm be

realized physically?

The bulk of our project relates to the middle column in Marr’s diagram—the

representational stage. Building on a theory of computation already present in the

theoretical literature, the task presented to the linguist writing a learning system such

1That is, ‘performance of the device is characterized as a mapping from one kind of information
to another, the abstract properties of this mapping are defined precisely and its appropriateness and
adequacy for the task at hand are demonstrated’, Ibid.
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as this is that of finding a way to algorithmically compute over the representational

space described by the formalism. This process is not unidirectional, however. The

end goal of building a learning model is reflexive, to remark on the original compu-

tational theory—in attempting to find the most elegant algorithms and selecting the

most appropriate data structures for phonological representations, we can revise our

understanding (and propose new theories and processes) at the computational level

itself.

This sort of approach does not say anything about the hardware layer—rather,

it begins with the pseudo-code outlined by the computational theory and translates

it into the specification for a virtual machine. Such reticence in this regard is, we

think, theoretically justified—especially in light of the alternative approach which is

currently dominant in the phonological field.

Optimality Theoretic models seek to unify all three columns, providing an account

of phonological competence that encompasses hardware, algorithm and mapping ab-

stractions as made clear by Smolensky (1999):

Fundamental defining principles of OT, and their relation to connection-

ism. . .

a. Optimality. The correct output representation is the one that maxi-

mizes Harmony.

b. Containment. Competition for optimality is between outputs that in-

clude the given input. (Clamping the input units restricts the opti-

mization in a network to those patterns including the input.)

c. Parallelism. Harmony measures the degree of simultaneous satisfac-

tion of constraints. (Connectionist optimization is parallel: the con-

straints encoded in the connections all apply simultaneously to a
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potential output.)

d. Interactionism. The complexity of patterns of grammaticality comes

not from individual constraints, which are relatively simple and gen-

eral, but from the mutual interaction of multiple constraints. (Each

connection in a network is a simple, general constraint on the co-

activity of the units it connects; complex behavior emerges only from

the interaction of many constraints.)

e. Conflict. Constraints conflict: it is typically impossible to simultane-

ously satisfy them all. (Positive and negative connections typically

put conflicting pressures on a unit’s activity.)

f. Domination. Constraint conflict is resolved via a notion of differential

strength: stronger constraints prevail over weaker ones in cases of

conflict.

g. Minimal violability. Correct outputs typically violate some constraints

(because of e), but do so only to the minimal degree needed to satisfy

stronger constraints.

h. Learning requires determination of constraint strengths. Acquiring the

grammar of a particular language requires determining the relative

strengths of constraints in the target language.

(Smolensky, 1999, p. 597)

In OT, parallelist connectionist networks provide the bedrock over which higher

level abstractions are computed: a connectionist network is the brain in these mod-

els. The representational and algorithmic level involves an approach to mapping the

constraint space, ranking ordering techniques and surface form generation modules
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onto the hardware and as such makes claims both about the neurological nature of

abstract phonological computations and how abstractions are learned. We say that

these abstracts have been reduced to their neural correlates. The final computational

level is the daily bread of OT phonological analysis, and is usually represented in the

form of a tableaux. The presentation of a phonological alternation will have, for better

or worse, a well defined relationship to both the algorithmic and hardware layer.

We instead adopt Marrian modularity; hypothesising that the relationship be-

tween linguistic computation and its algorithmic realisation in no way necessitates

(or implies) an understanding of the underlying hardware. Put another way: neural

nets may well be the best possible mechanism for modelling neural structure—this

project, however, sits at a higher level of abstraction and as such has nothing to say

about the brain or how the virtual machine relates to neural pathways. This nat-

urally introduces the question of which approach is more desirable; from the brief

presentation above it certainly seems that an approach encompassing all three levels

is richer than the modularity we have adopted.

This is not so. Two considerations are important here. The first is that neural

(connectionist) networks do not, in any empirical way, model the brain. Instead these

neural network models rely on an analogy between simple data structures (labelled

as ‘neurons’) and neurological structure. There is no doubt that these networks are

oversimplifications—but oversimplifications are acceptable in the development of a

science and working with simplified models can be productive. The real problem

is this: any attempt to build a neural analogy into a theory of abstract linguistic

computation ignores the simple fact that we do not yet understand the mapping from

abstract reasoning to neural matter. While the Optimality Theorist can claim that,

starting from simple foundations, he can model a phonological grammar, this is still

contingent on the arbitrariness of the connectionist platform itself.
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Modularity affords us the possibility to understand one domain well using a set

of well-defined primitives; later, these primitives can be analysed and refactored into

functionality that interfaces with lower levels of the cognitive architecture in the

Language Faculty.

1.6 Why Derivational Phonology?

It is not the purpose of this thesis to directly address the debate between Derivational

and Optimality Theoretic approaches to phonology and come out in favour of one or

the other—such a task is too large even for a work of this length that is wholly dedi-

cated to the subject. Our task is more modest; in this section we situates the debate

between serialist and parallelist approaches to representing the Language Faculty—

and phonology in particular—in order to justify and contextualise the learning task

that we have set for ourselves.

In his Manifesto, Vaux (2007) addresses the (supposed) theoretical advances in OT

models by revisiting the original motivating arguments and assessing whether their

validity is well justified. The key concern is well summarised in the following passage:

I am not aware of any serious attempt by an optimologist to explicitly

examine or falsify a DP [Derivational Phonology] analysis. This is not

surprising, given that none of the points in (1) [empirical results, gen-

erality of scope, parsimony, markedness, connectionism, factorial typology,

conspiracies, MSCs, problems with rules and levels, gradient wellformedness,

backcopying, . . . learnability] actually poses a legitimate problem for DP.

Space constraints prevent me from discussing all of the points in (1) here;

in what follows I focus on those that are mentioned most frequently in
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the OT literature.

(Vaux, 2007, p. 2–3)

Vaux goes on to argue for serialist models and against OT, assessing the viability

of each model as it relates to the list of categories outlined at the beginning of the

paper and by re-examining the viability of a subset of these categories (e.g., typology,

markedness) as integral parts of phonology theory.

Perhaps most the most salient topic in the manifesto is the comparison of acqui-

sition and generalisation in each theory. Vaux argues the following:

1.4. Acquisition as generalization formation

Finally, OT misses the fact that grammar construction is driven by the

extraction of generalizations from the data to which the learner is ex-

posed. These generalizations are encoded directly in rules and inviolable

constraints, whereas OT is forced to simulate their effects via complicated

constraint rankings, which in turn can only be arrived at after comparing

the outputs of an equally complicated array of competing rankings. In this

sense the learning strategy employed in DP is formally simpler than what

is required in OT, and more insightfully captures our intuitions concerning

the nature of the acquisition process.

(Vaux, 2007, p. 6)

While the meaning of formal simplicity is ambiguous (computational complexity

or generative capacity?), the essence of the point—that DP models have an intuitively

simple acquisition model involving learning well-factored implications and combining

them to yield ordered derivations—is important for what shall follow. From this sim-

ple model, phonological effects such as opacity come free with no need for additional
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computational machinery as in OT. This is not to say that OT is undesirable simply

because it is complex; rather, we are suggesting that certain phenomena might be bet-

ter explained in a derivational context if they are contingent on other well motivated

properties of that model.

As such: if we accept Vaux’s style of argumentation and focus solely on the

acquisition problem for serialist models we could, in theory, see excellent returns on

our investment as our implementation would, by definition, deal with problematic

cases such as opacity gratis.
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Chapter 2
Learning Phonology: Previous Approaches

2.1 Just what are we trying to learn?

Put baldly, the task of our learner is to infer underlying forms and ordered rules from

phonological paradigms akin to those found in traditional pen and paper analyses.

As such, the scheme that we are proposing can be considered a batch learner capable

of analysing surface alternations and hypothesising ordered derivations compatible

with them in order to create an explicit mapping from UR to SR.

This approach, then, shall refer to both the competence of an idealised speaker-

hearer (in keeping with traditional generative linguistic theory) and the conscious

methods employed by the phonologist in the course of analysing data sets. Ambiguity

for the learner will mean that a linguist applying the same methodology will have to

rely on other heuristics for coming to a satisfactory solution and that a speaker-hearer

employing the method being outlined will either be unable to make a satisfactory

inference or apply methods outside of the purview of our scheme.

In order for these tasks to be coherent, then, the fundamental axiom of our model is

that the child has memorised the relevant surface forms—forms heard by the child and
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stored as sequences of phonological segments—along with the appropriate semantic

information in order to allow them to set up paradigmatic structures for the purpose

of inferring both underlying forms and phonological rules simultaneously. Indeed, the

mapping from minimal pairs to underlying forms is the primary conduit to inferring

the rules themselves. Furthermore, the speaker-hearer must have the capacity to

structure these forms in such a way that minimal differences can be analysed and

the rules that account for variations can be inferred. We shall term the structure in

which variant surface forms are situated the paradigm.

A further stipulation of our model, in keeping with the Derivational tradition, is

that the output of such an analysis—ordered rules—is the final state of the phonol-

ogy, not a precondition for building constraint rankings in an Optimality Theoretic

framework. As we shall see below in the discussion of the Albright & Hayes’ (1999)

approach, this distinguishes our model from contemporary efforts to employ rules as

an intermediate phase in an eventual transition to ranked constraints. As outlined in

the first chapter, we wish to render phonological competence explicit in a Derivational

light, paying particular attention to complex phenomena that Optimality models still

struggle to compute—in particular, opacity. It is not the purpose of this thesis to

argue for Derivational phonology and against the OT framework; rather, we demon-

strate the results that can be obtained in the Derivational context by applying a

simple set of heuristics for analysis and inference. As such, where Albright and Hayes

use rules as they are an effective learning strategy only to abandon them due to a

commitment to OT, we believe that discrete rules inferred in the course of learning

are an end in themselves.

We hope to achieve all of the above goals with an elegant and simple model

capable of contributing to further research into explanatorily adequate models of

human competence and language acquisition.
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2.2 Phonotactics, stress, underlying forms

2.2.1 Bobrow & Fraser (1968). A Phonological Rule Tester

Bobrow and Fraser’s scheme is of historical interest not for its learning capabilities but

rather for being one of the first attempts to computationally model the generative

phonological system of SPE (Chomsky & Halle, 1968). Especially noteworthy is a

point that they make regarding the multiplicity of rule types in the Derivational

model:

We distinguish three types of phonological rules within the system: a

simple rule, an insertion rule, and a string rule. It is convenient to think

of each rule as consisting of a left-hand side (LHS), which specifies the

condition on the substring to be altered; a right-hand side (RHS), which

specifies the change to be made; and a context, which specifies the en-

vironment in which the substring matched by the LHS must be located.

(Bobrow & Fraser, 1968, p. 768)

While this distinction points to an important fact about generative capacity—that

deletion and insertion are qualitatively different from feature changing rules in that

they (i) change the length of the representation and (ii) manipulate feature matrices

as a whole rather than operating over a subset of featural specifications—it seems

more convenient simply to view phonological rules as string re-writing systems.

Even so, the point made above by Bobrow and Fraser carries over to our scheme in

which deletion and insertion have to be treated specially—and require preprocessing

to address problems of correspondence.
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2.2.2 Albright & Hayes (1999): An Automated Learner

Albright and Hayes (1999, hereafter AH) open their paper with a discussion of the

relationship between the computational implementation of their phonological learner

and the role of the linguist:

In this approach, phonological analyses are not invented by linguists, but

must be learned by algorithm, from a representative set of input data.

The linguist is responsible for the algorithm, and the algorithm models

the language through the grammar it learns. In this way, every analysis

produced would address learnability directly, since the algorithm that gen-

erates the analysis in effect forms the learnability theory for that analysis.

(Albright & Hayes, 1999, p. 2)

We find ourselves in accord with this statement; the natural question, then, is

what the underlying axioms of their model are and whether they are appropriate for

a theory of acquisition.

The AH model is predominantly morphological; as such, much of the content of

their paper cannot be readily translated into the tasks that face our learning problem.

Default mappings, confidence metrics (through reliability criteria) and hypothesis

growth all play central roles in their scheme. Phonology enters the picture through

morphological guesswork:

A crucial part of our Learner is that it attempts to “bootstrap” the phonol-

ogy and the morphology off of one another. Tentative guesses about mor-

phology spawn guesses about phonology. Then, with some phonology in

place, the performance of the morphological system is improved. Our spe-

cific strategy is to take highly trustable mappings, and try applying them
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to all stems meeting their structural description. For many stems this

obtains the right answer, but for others the answer is wrong. The rea-

son, very often, is that the system needs to take phonology into account.

(Albright & Hayes, 1999, p. 6)

Well-formedness in the AH model

The main problem for this approach (according to Albright and Hayes) is knowing

why certain sequences are ill-formed. They provide two possible solutions:

1. Scanning the ‘language in general’ for sequences exhibited by incorrect outputs;

• Absence of a sequence—in conjunction with evidence of a ‘repair’ process—

is a good indicator of ill-formedness.

2. Learning phonotactic well-formedness through an independent module and feed-

ing this information into the initial state of the bootstrapping learner.

(Albright & Hayes, 1999, p. 6)

From our vantage point, there are two problems with these solutions. The first

is that a language-wide scan is necessary for ascertaining ill-formedness; far more

desirable would be a model that employs local processes to account for learning in-

crementally. Models that propose multiple sweeps over large quantities of data in

order to ascertain local processes might make sense from a computational perspective

(i.e., data mining) but are suspicious when proposed as models of human linguistic

competence. This is related to a rather confusing point that Albright and Hayes

make, namely:

Our view is that it would be worthwhile for at least a subset of phonolog-

ical theorists to model speakers instead of languages.
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(Albright & Hayes, 1999, p. 2)

It is unclear exactly what is meant by languages in this context. It seems that

Albright and Hayes are employing the set theoretic definition of language (as a set

of strings)—or perhaps they are referring to E-language and data mining of corpora.

Whatever the case, this sort of statement is vacuous once one recognises that the

object of study for theoretical linguistics is I-language: in proposing a computational

learner for phonology, one seeks to model the competence of speaker-hearers. This

is the only coherent way of understanding what it means for a theoretician to model

language. As Chomsky clarifies,

Taking knowledge of language to be a cognitive state, we might construe

the “language” as an abstract object, the “object of knowledge”, an ab-

stract system of rules and principles (or whatever turns out to be correct)

that is an image of the generative procedure, the I-language, represented

in the mind and ultimately in the brain in now-unknown “more elemen-

tary” mechanisms.

(Chomsky, 2000, p. 73)

If we wish to understand the patterns and regularities in the phonology (and more

broadly, across other linguistic systems—syntax, semantics, etc.) it makes little sense

to focus on string sets and corpora when the generative aspect of language use is

situated in the mind of the speaker-hearer; it is an object of knowledge.

The second problem (again, from our perspective) is a reliance on phonotactics to

aid the learning process. We would rather demonstrate a learning model that relies

on the acquisition of forms as strings of segments that are then locally compared to

yield rules through observed alternation.
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Other Issues

A further point of difference from our approach is the exemplar theoretic foundations

of the AH model. Albright and Hayes explicitly state that

Our Learner does not reduce stems to a single underlying form; rather, it

rationalizes the paradigm by finding how (and to what extent) paradigm

members can be projected from one another. Speakers are assumed to

memorize not underlying forms, but rather at least enough surface forms

of each stem so that missing paradigm elements can be projected from

what is already known (Burzio 1996; Hayes, in press). (Albright & Hayes,

1999, p. 7)

We do not employ such projection between paradigm members, nor the assump-

tion that speakers fail to memorise underlying forms. Rather, the batch learning

model under consideration here begins with a glossed set of paradigms and takes the

learner from surface forms to underlying forms. The rules inferred in the course of

analysis can then be directly employed for the generation task yielding phonologically

conditioned surface representations from entries in the speaker-hearer’s lexicon.

2.2.3 Tesar and Smolensky (2000): Learnability in OT

Tesar and Smolensky (2000) (hereafter, T&S) provide a learning model for stress

rather than segmental alternation. Given the Optimality Theoretic paradigm, the

hope is that it can be generalised to the ranking of other OT constraints too, hence

this discrete and specific focus.

A goal of the T&S learner is to constrain the possible search space and prevent

combinatorial search among N ! possible grammars (given N constraints). They argue

that. . .
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. . . to achieve meaningful assurance of learnability from our grammatical

theory, we must seek evidence that the theory provides the space of pos-

sible grammars with the kind of structure that learning can effectively

exploit. (Tesar & Smolensky, 2000, p. 3)

Tesar and Smolensky make frequent reference to the link between metrical acqui-

sition and Principles and Parameters referencing, among other work, the triggering

learning algorithm of Gibson and Wexler (1994). This is indicative of the divergence

of our approach from theirs. Firstly, acquisition of phonological rules clearly differs

from establishing a constraint ranking as per Optimality Theory’s methodology. Sec-

ondly, we consider stress acquisition (and stress computation) to require additional

computational machinery and draw a strict demarcation between the acquisition of

underlying forms and phonological rules on the one hand and stress rules on the

other. (See for example Idsardi, 1992.) Finally, we have no need to refer to para-

metric properties of Universal Grammar in order to establish the phonological rules

and processes at work in language-specific grammars. Rather, we assume a universal

feature inventory and discrete, well-defined cross-linguistic operations for mapping

between underlying forms and surface forms.

The point that T&S make in the above quotation, however, applies equally to

Derivational and Optimality Theoretic models: ranking of constraints and ordering

of rules both require an N ! search space. This has been presented as a fundamental

problem for Derivational Phonology (and even an argument against it); we disagree.

Since the rules posited in Derivational models are language-specific, N will typically

be much smaller than in OT. In section (4.7.1) we shall propose a system involving

incremental checks of inferred rules as well as a final attempt to permute the resultant

ordered set as much as possible providing all possible plausible orderings.
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2.2.4 Tesar (2006): Learning from Paradigmatic Information

A good discussion of the importance of the paradigm in phonological learning is

provided by Tesar (2006) where paradigmatic learning is contrasted with approaches

dominated by phonotactics—

Paradigmatic information is of interest here because of its role in phono-

logical learning. It stands in addition to purely phonotactic learning,

in which each word is treated as isolated and monolithic. Phonotactic

learning has been characterized as a stage in which the learner has no

awareness of word-internal morphological structure, and no knowledge of

shared morphemes across words (Hayes 2004, Prince and Tesar 2004). In

other words, phonotactic learning does not make use of paradigmatic in-

formation. Phonotactic information, under this characterization, consists

of the observed inventory of surface word forms. (Tesar, 2006, p. 293)

Furthermore,

Paradigmatic information is necessary for learning; there are aspects of

phonological systems which are not revealed through phonotactic infor-

mation alone. (Tesar, 2006, p. 293)

The necessity of non-phonotactic information in the learning task is demonstrated

through the presentation of two toy languages with identical phonotactics but very

different phonologies. These languages are differentiated by their default stress—

the first defaulting left, the second right (Tesar, 2006, p. 295). In presenting his

scheme, Tesar draws attention to the necessity of breaking information into subsets

of the overall domain in order to construct appropriate learning algorithms—and that

the choice of subsets involves a compromise between informational redundancy and

computational efficiency. Regarding the content of the sets, he writes,
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If the learner is going to focus processing on data subsets, it will want

to construct subsets that group together forms that are inter-related in

revealing ways. . . . If the learner processes a data subset by trying many

different possible underlying forms for each of the morphemes in the data

subset, then the required computational effort can be expected to increase

significantly for data subsets with larger numbers of morphemes (other

things being equal) (Tesar, 2006, p. 296).

As such, there is a trade-off in this model—one that we might paint along an

axis of aptness vs. efficiency1. An example of an (undesirable) imbalance would

be concentrating on individual tokens; processing can be undertaken efficiently but

too little information is provided to the learner. Instead we ought to focus on the

paradigm where enough context is provided for the learning task to be initiated. It is

difficult to see how this tension could be related back to the acquisition process itself;

where Tesar seems to allow for two situations—efficient but questionable inference

and inefficient but rigourous learning—we would rather rely on a well defined process

that steps through all provided data and makes inferences according to well defined

principles.

As indicated in (§2.1), our starting point is the paradigm—we do not make use

of phonotactics in the task of acquiring a phonological grammar. Put differently,

our model attempts to learn phonologies without referencing phonotactics. Tesar, by

contrast, does rely on phonotactic information to aid in the learning task:

While phonotactic information is insufficient to determine the entire gram-

mar, it can determine parts of the grammar. Phonotactic learning here

1Tesar does not use the term ‘aptness’ in this paper, though it seems appropriate given the
content of his discussion.
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involves treating each word in isolation, as if it were monomorphemic.

[. . . ] The phonotactic inventory of [a language] determines some ranking

relations. . . . [These] are necessary to map the observed forms to them-

selves. (Tesar, 2006, p. 297–8)

Our research question is more fundamental: given surface alternations, how suc-

cessfully can underlying forms be learned?

Unset Features in Underlying Forms

A further difference from the Tesar model has to do with feature specifications in

the course of learning. Tesar employs a special symbol—‘?’—to denote ‘a feature

that as not yet been set by the learner’ (Tesar, 2006, p. 299). This is not a means

for representing underspecified segments; rather, it acts as a placeholder for later

specification inferred in the course of analysis.

Our alternation approach—sketched in some detail in (§4.3.1)—instead finds deriva-

tion paths between segments exhibiting alternation. As such, nothing is added to the

lexicon without a coherent featural specification. While this might seem like a trivial

difference, it in fact exhibits a very different approach to rule and underlying form

acquisition; Tesar treats the lexicon as a store for ongoing inference, whereas we pro-

vide no such structure. By contrast, we encode data to be learned in the paradigm

itself and store inferred underlying forms at the end of analysis. This final store we

might term the ‘lexicon’, though in our model it is localised to a particular paradigm

and merely summarises the results of the acquisition process.
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2.3 Encoding the logic of the analyst

2.3.1 Surface alternation as entry point: for child, for pho-

nologist

As outlined in the foregoing discussion—in particular of Tesar’s model (2006)—we

employ paradigmatic information as an input to the learner; from the paradigm, mor-

phological alternations evidenced in surface forms can be extracted to infer phono-

logical rules and hypothesise serial derivations. Recall that. . .

. . . [p]aradigmatic information is information requiring knowledge of mor-

phological identity across words. It consists of the phonological conse-

quences of knowing that a morpheme must have a single phonological

underlying form, even if it surfaces differently in different words.

(Tesar, 2006, Abstract)

In employing paradigms for inference, we are in accord with Tesar’s observation

that phonotactics are not appropriate for conducting batch phonological acquisition—

and that it is the phonological consequences of morphological identity that yield

ordered rules.

We are now ready to lay the foundations for a model that determines morpholog-

ical identity from alternating forms, thereby bootstrapping a phonological grammar.

Inference hinges on a single condition: underlying forms must be unified according

to gloss (see §4.1.2). That is to say—if two underlying forms for cat are found in

the course of pairwise analysis, the learner cannot choose different forms for each—

given that their glosses are identical (cat = cat), URs must be too. This identity is

guaranteed through unification which provides a powerful context in which to situ-
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ate rule acquisition and also points to a specific declarative programming model for

implementing this approach.
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Chapter 3
Theoretical Preliminaries

3.1 What is a feature?

3.1.1 Binary Features

This system assumes binary features for defining segments, though we admit ‘∅’ as

a legal sign for the purpose of unspecifying a feature. This is discussed in (§3.2.1).

3.1.2 Features without (phonetic) substance

An important remark at this point has to do with the ontological status of the features

and segments that are employed in the demonstrations to follow. For want of a

better word, we provide toy inventories—in so far as they are qualitatively limited for

expository purposes1.

Given our discussion of substance-free phonology in (1.2.1), however, it is clear

that in a very fundamental sense these inventories are not toys at all. This relates

to the essential arbitrariness of the feature-set with regard to the actual phonological

1It is worth remarking at this juncture that the arbitrariness of the selected features has no inte-
gral connection with the nature of analysis, merely the content of inferred rules and representations.
As such we would gain little by providing a richer inventory and likely end up confusing the reader.
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computation—and of special interest to us, phonological inference. Since. . .

. . . the substance of phonological entities is never relevant to how they are

treated by the computational system, except in arbitrary, stipulative ways

(Hale & Reiss, 2000, p. 157) . . .

. . . a demonstration of the mechanics of alternation and derivation—while related

to an inventory—are generalisable to the computational properties of the grammar

itself. In other words, features are treated as first-class objects integral to phonologi-

cal computation—i.e., phonological computation and inference operates over feature

space, not unanalysed segments. Neither the process of transduction nor the observa-

tion of minimal differences relies on anything other than feature bundle comparison,

unification and computation of identity—irrespective of the phonetic correlates of the

features involved.

3.2 What is a representation?

A representation is a sequence of feature matrices bounded by # markers, symbols

drawn from the meta-language that are mapped with an identity relation. Below we

explain the structure of representations and the segments used to build them.

3.2.1 Implicit Precedence

We assume that linear representations are ordered sets of segments where segments are

drawn from an inventory of featural units composed of sign (where sign ∈ {∅, +,−})

and attribute (attr ∈ Attributes, defined below).

(3.1) Attributes = {anterior, strident, sonorant, voice, nasal, lateral, continuant,

consonantal, distributed, delayed, dorsal, coronal, labial,
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high, low, back, round}

Segments are sets whose members are sign-attribute pairs; underspecification is

possible through the omission of sign-attribute pairs from the set representing a seg-

ment. The pair U = (∅, Attr) is necessary for unspecifying a feature. The attribute

set is the only representation of feature attributes—we do not employ feature geo-

metric structure anywhere in our model.

Precedence is an implicit property of representations; ordered sets are imple-

mented computationally as linked lists, a near ubiquitous data structure in which

each element (or cons cell) contains a value slot (in which we place the feature ma-

trix) and a pointer slot which indicates a successor cell2. The final element in a

representation points to the null set (depicted here as ‘{’); this is used in the majority

of predicates as the terminating condition for recursive function application.

To illustrate, consider a simple representation like /#kæt#/ which would be rep-

resented as follows (note that feature matrices have been notated in IPA for expository

purposes):

(3.2) # • k • æ • t • # • {

Following the traditional depiction of linked lists in computer science, we depict

cons cells as boxed records where the first slot contains a segment and the rest

slot points to the following cell. This clarification is worthwhile as, although we only

encode precedence implicitly, the data structure upon which representations are built

shares with Raimy an (underlying) explicit coding of precedence links (Raimy, 2000).

Given that these pointers are set during sequential construction of the representa-

tion, though, we simply treat the chain of pointers as implicitly encoding precedence

2In Lisp terminology, the value slot is known as car and the next pointer cdr. If we need to
refer to these slots, we shall instead adopt the more modern (and language neutral) terms first

and rest.
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and make use of standard list manipulation techniques for affixation and morpholog-

ical decomposition. Stepping through a representation involves following the rest

pointers which return the tail of the list:

(3.3) k • æ • t • # • {

(3.4) æ • t • # • {

(3.5) t • # • {

(3.6) # • {

(3.7) {

As mentioned above, we can step recursively through representations and treat (3.7)

as the terminating condition—when the head of the representation is ‘{’, there are no

more segments to process.

3.3 What is a rule?

Phonological rules are string rewrite systems that map between strings of input sym-

bols drawn from a well defined vocabulary. An ideal mechanism for performing this

mapping is the transducer which consumes its input one symbol at a time and writes

output to a parallel location. Due to the convenience with which we can imple-

ment input-output mapping between segments with finite-state approaches, we adopt

transducers in our model with a crucial caveat: we are not making theoretical claims

as to the finite-state nature of phonology as a whole. We clarify this point—using

transducers for engineering a solution but not for making a formal claim about the

generative capacity of the phonological module—below.
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3.3.1 Finite State Transduction

Formal phonology—both as a computational and theoretical discipline—has attached

itself to the idea of employing finite-state automata wherever possible. In this respect

phonology is differentiated from other grammatical modules (syntax, semantics) as

the latter cannot employ finite state technology effectively. This result has been

known to hold for syntax since (Chomsky, 1957).

Research into the finite-stateness of phonology has its foundation in work by

C. D. Johnson regarding the possibility of representing phonological rewrite rules as

regular relations that map between input and output alphabets (Johnson, 1972). De-

fined as ‘a finite-state language in which the expressions are composed of symbol pairs

rather than single symbols, a mapping of one regular set to another one’ (Karttunen,

1993), regular relations embody a radical simplification of the computational machin-

ery (finite state transducers) and weak grammatical complexity (regular as opposed

to context-sensitive grammar) at work in phonological derivations.

For this result to hold, various restrictions need to be imposed upon the phonolog-

ical component—notably, the rejection of cyclicity in favour of iterative, directional

rule application—but the basic approach appears to be an attractive one for reasons

of elegance and simplicity.

More importantly, finite state transduction offers a very real possibility of boost-

ing the efficiency of computation when implementing formal models. This realisation

emerged a decade later when Kaplan and Kay (1994) discovered Johnson’s (1972)

work and employed the isomorphism between regular relations and finite state trans-

ducers to suggest that the phonology as a whole could be represented as a sequence

of transducers—which could then compiled into a single finite-state transducer en-

compassing the entire ordered rule system (Kaplan & Kay, 1994).
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While this adoption may seem desirable at first blush, it ignores at least two

important points. The first is that it is unclear whether we can simply characterise

phonology as finite state to the exclusion of the rest of the language faculty. It

has long been known that natural language syntax exceeds the generative capacity

of context-free (and hence regular, finite-state) grammars. To claim a theoretical

advance by demonstrating that the phonology can be modelled using finite-state

transduction then becomes clouded by the more general admission that the language

faculty is not, in itself, finite-state. This argument can be bypassed by an appeal to

modularity and a research programme that seeks to constrain every module as far

as possible. The motivation for this is, however, unclear. From a theoretical and

cognitivist standpoint, is is uncertain what it means to establish the weak generative

capacity of a given module. Chomsky made this point over forty years ago, stating

that. . .

. . . one can construct hierarchies of grammatical theories in terms of weak

and strong generative capacity, but it is important to bear in mind that

these hierarchies do not necessarily correspond to what is probably the

empirically most significant dimension of increasing power of linguistic

theory. (Chomsky, 1965, p. 62)

Chomsky’s discussion suggests that weak generative capacity should play practi-

cally no role in determining the power of a linguistic theory.

It might conceivably turn out that [a] theory is extremely powerful (per-

haps even universal, that is, equivalent in generative capacity to the theory

of Turing machines) along the dimension of weak generative capacity, and

even along the dimension of strong generative capacity. It will not neces-

sarily follow that it is very powerful (and hence to be discounted) in the
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dimension which is ultimately of real empirical significance. (Chomsky,

1965, p. 62)

Berwick and Weinberg (1982) clarify this notion of empirical significance by break-

ing it down into two related problems: Relevant Range and Implementation.

The Relevant Range problem has ‘quasi-biological import’3 (which is to say it

is biolinguistically motivated) and hinges on the mathematical relationship between

the time complexity of different formalisms and the size of the data submitted for

parsing. Berwick and Weinberg point out that in a syntactic setting, the length of the

input sentence actually impacts the efficiency of the parsing algorithm; if a sentence

exceeds a certain length, arguments from the standpoint of algorithmic efficiency and

grammatical economy may come into play. If, however, the input length is shorter

than this critical length, the economic choice is far from clear. As such,

. . . an argument based on algorithmic superiority is only valid if we add the

assumptions that: (1) sentences of the break-point length or greater actu-

ally occur in practice; (2) it actually matters that one procedure can parse

a single sentence 11 words long in half the time of another—presumably

for reasons of expressive power; and (3) the language faculty has been

“shaped” by natural selection primarily on the basis of the selectional ad-

vantage conferred by more efficient sentence processing (leaving aside the

question of whether or not this is indeed the primary “role” of the language

faculty). However, it is actually difficult to see under what conditions this

alleged parsing advantage could arise in practice. Not only are we forced

to envisage a case where the speedier parsing of a long sentence mat-

ters, and matters in some selectional sense, but also this difficult-to-parse

3(Berwick & Weinberg, 1982, p. 180)
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sentence can have no two-sentence expressive substitute (for otherwise,

it would come under the functional umbrella of the “slower” exponential

procedure as well)

Thus, the distinction between, say, cubic time and exponential time [pars-

ing] procedures is possibly of no import in biological practice, depending

upon the range of sentence lengths that actually mattered in the evolu-

tionary “design” of language. . .

(Berwick & Weinberg, 1982, p. 180–1)

This discussion gives a clear indication of why we should be wary of constraining

our formalism through an appeal to formal language theory alone, defining economy

in the absence of actual biolinguistically motivated theory. Furthermore, it may turn

out that more complex formalisms are in fact more easily learnable—contrary to

received wisdom of the discipline:

Thus, although a set of strings may be perfectly well describable (in the

weak generative sense) by a system of low expressive power, it may actu-

ally be advantageous in terms of parsing efficiency to capture the structure

of that set by a more powerful formalism. The reason is simply that if

in one formalism parsing time is some linear function of the length of the

input and the size of the grammar (i.e. is proportional to k × |G|n), and

if one can move to, say, a context-free formalism and reduce the size of

the grammar exponentially, then the price of using the n3 context-free

parsing algorithm could be well worth it: a reduction in the size of the

grammar could more than make up for the increase due to the exponent

change from n to n3. Note that this advantage of succinctness is quite

different from the usual linguistic claim that a more compact grammar
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is more easily learnable; we are claiming that it is possible that a more

compact grammar, expressed by a more powerful formal system, is more

efficiently processed as well.

(Berwick & Weinberg, 1982, p. 184)

With this said about the relevant range problem, Berwick and Weinberg discuss

the problem of implementation and associating computational organisation with cog-

nitive structure:

Since different representational formats can make for quite significant dif-

ferences in parsing efficiency in the case of context-free parsing, it seems

reasonable to conclude that the proper practical evaluation of an algo-

rithm is a sophisticated task. It requires careful attention to alternative

data structures and the underlying organization of the computer that has

been assumed. In the cognitive domain the task is even more difficult,

since the attendant computational assumptions are more likely to be lack-

ing independent support. For example, if the primitive parallel operations

demanded by the most efficient of the Graham, Harrison, and Ruzzo tech-

niques have no analogue in cognitive machinery, then we cannot exploit

the efficiency gains of this method. In short, we again discover that we

must have a theory of implementation and some specific knowledge of the

computational capabilities of the brain.

(Berwick & Weinberg, 1982, p. 186)

This argument coincides with our discussion of Marr presented in (1.5.1); the

empirical significance of a particular grammatical formalism cannot be determined

on the basis of mathematical string sets; rather, it has to relate to cognitive struc-
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ture, a theory of acquisition and a theory of the representational space over which

computation takes place.

While the above exposition of empirical significance is compelling from a biolin-

guistic perspective, the opposing position—extolled by many in the field—still holds

strong currency today. John Coleman, for example, claims that. . .

. . . the continued preponderance of all manner of transformational rules

in generative phonology suggests that phonologists, on the whole, are

unaware of the formal problems that led syntacticians to give up transfor-

mational rules, or that they regard phonology to be governed by different

considerations from syntax (see Bromberger & Halle, 1989)

(Coleman, 2005, p. 84)

While it may be true that there has been a lack of formal explicitness in phono-

logical theory, it would seem that exclusively focusing on weak generative capacity is

misguided and, as pointed out by Chomsky, not necessarily informative or useful in

any empirical sense.

A final—and revealing—remark comes from Johnson himself who recognised the

potential for translating phonological rules into finite state machines. He notes that

[o]ne could, for example, propose that phonological rules be finite trans-

ducers in the literal sense. No one would take such a suggestion seriously

because of the linguistic inappropriateness of the formulations it would

require. (Johnson, 1972, p. 58)

Here we agree with Johnson; for our purposes, finite-state models are convenient

from an implementation standpoint but strictly do not reflect our attitude towards

the ontological status of phonological rules themselves.
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3.3.2 Why are FSTs desirable at all, then?

Given the simplicity of their specification, finite state transducers make for a con-

veniently compact representation of rules in computational memory. To focus on

their simplicity seems misguided as the infrastructure required for their induction

(in our system) simply negates the theoretical attractiveness of simple devices from

theoretical standpoint.

3.3.3 Features good, orthography bad

The theoretical plausibility of finite state transduction is often obscured by demon-

strations of these devices for the purposes of orthographic morphological analysis (see,

for example, Gildea & Jurafsky, 1995).

While we can point to the formal equivalence between transducers that employ

orthographic alphabets (or phonemic ones) and those that are built with featural

vocabularies, the former class of machines are incapable of expressing a fundamental

principle of phonological rules: the notion of natural classes. This is addressed in

detail in (§4.5.1).

At the simplest level, we can think of natural classes in terms of feature intersection

capturing generalisations about the distribution of patterns in the phonology of a

given language. The mechanisms responsible for inferring and applying rules need to

be able to refer to commonalities in rule environments and foci.

3.3.4 Single feature changes

A final theoretical consideration is the nature of the structural changes licensed in

individual phonological rewrite rules. Here we follow Chomsky (1967) in constraining

the size of the change matrix to a single feature:
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Principle 6: Two successive lines of a derivation can differ by at most

one feature specification.

(Chomsky, 1967, p. 125)

This means that alternations exhibiting multiple feature changes in surface al-

ternants of a single morpheme—for example pag∼pax—need to be broken down into

their individual parts. The resulting individual rules can then either be adjacent in

the derivation or separated by an arbitrary number of intermediate rules.

Consider Chomsky’s original discussion of converting /k/ to [c]:

(31) A segment which becomes a palatal becomes strident.

[ . . . ]

If we omit the reference to stridency, the rule converting /k/ to [c] is:

(32) k →







−grave

+diffuse







(Chomsky, 1967, p. 125)

Given Principle 6, this rule needs to be interpreted as ‘comprising two steps:

the first of these converts /k/ to the corresponding [−grave] segment4 [k,]; and the

second step introduces the feature [+diffuse]5’ (Ibid, our footnotes). Why would we

want to do this? Chomsky argues that by breaking down this composite rule (which

we shall term a process) into two discrete steps, a separate rule can be interleaved that

converts palatals into stridents. As such, the result of the application of [−grave] will

yield [k
¯
] which can then be converted to [č]. This has proven very useful in finding

compatible orderings during rule inference (see §4.3.1).

4[−back]
5[+high]
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Chapter 4
Implementation

4.1 Why Prolog?

Our learner has been built from the ground up in the Prolog, a programming language

that. . .

. . . can be considered primarily as a theorem-proving system [Rob65] whose

common application consists of asking queries in the context of a universe

defined in clausal form. (Boizumault, 1993, p. 30)

In the case of phonological rule acquisition, the theorems to be proved are the

rules inferred in the course of analysis. Prolog is particularly well suited to this task

due to its in built support for unification—in particular, the learner can backtrack

when it makes an erroneous inference or is asked to re-analyse a data set.

The primary top-level input to the inference engine is what we shall term a phono-

logical paradigm; this is in fact composed of pairs of surface forms that are analysed in

the course of inference. In this sense, the term serves something of a double meaning

referring both to the paradigms being compared and the global data set over which

this computation takes place. We adopt the latter.
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In order to find underlying forms and phonological rules, a paradigm query is de-

composed and rules are sought that map between the pairs in the input. In order to

explain this process clearly it is first necessary to understand the basic mechanics of a

Prolog programme—its facts, rules and the method by which we query the database.

4.1.1 Facts and Rules

At the heart of Prolog lie three main concepts: facts, rules and queries.

The simplest kind of statement is called a fact. Facts are a means of

stating that a relation holds between objects. (Sterling & Shapiro, 1994,

p. 11)

To be more specific: facts define the primitives of our model—for our purposes,

these primitives should correspond with properties of Universal Grammar. These

primitives provide the foundation upon which phonological inference is computed by

the learner. Given our primitives, we can define rules which. . .

. . . enabl[e] us to define new relationships in terms of existing relationships.

(Sterling & Shapiro, 1994, p. 18)

4.1.2 Unification

Unification is fundamental to the method of binding variables in Prolog—and hence

its ability to perform complex inferences. Unification is directly related to identity,

subsumption and substitution and can be adequately introduced with a simple sym-

bolic example—

Informally, unification is the process of making terms identical by means

of certain substitutions. For example, the terms f(a, y, z) and f(x, b, z),
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with a, b constants and x, y, z variables, can be made identical by applying

to them the substitution {x/a, y/b}: both sides then become f(a, b, z).

But the substitution {x/a, y/b, z/a} also makes these two terms identical.

Such substitutions are called unifiers. (Apt, 1997, p. 24)

We can formalise this notion by following Shieber and examining unification as it

applies to feature structures,

In formal terms, we define the unification of two feature structures D′

and D′′ as the most general feature structure D, such that D′ ⊑ D and

D′′ ⊑ D. We note this D = D′ ⊔ D′′. (Shieber, 1986)

where ‘⊑’ is the subsumption operator. One structure A subsumes another B if

and only if it has less information than B (or: if and only if A is more general than

B).

While Shieber is referring to constraint-based unification models of grammar such

as LFG and HPSG the principle applies equally well to the unification of feature

matrices in Derivational Phonology—this can be employed for predicating on the

presence or absence of a specific feature as well as finding a specification in order to

flip its sign specification—the key criterion being its substitutability.

To illustrate the utility of this method, consider Boizumault’s schematisation of

unification of terms in Prolog:

Given: two terms t1 and t2.

Result: a pair (bool, σ) such that:

• bool = true if and only if the two terms are unifiable.

• if bool = true then σ is the most general unifier for t1 and t2.
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(Boizumault, 1993, p. 16)

A commonly used introductory example found in the majority of Prolog textbooks

involves parenthood and exhibits the above principles very clearly. First, let us define

a few facts about the world—as mentioned above, these can be considered primitives

of the logical world over which inference is to take place:

Elementary Facts

(4.1) 1 male(john).

2 male(matthew).

3

4 female(sally).

5 female(zoe).

6

7 parent(john, zoe).

8 parent(sally, zoe).

9

10 parent(john, matthew).

11 parent(sally, matthew).

Unification becomes relevant when we pair these facts with the following rules:

Elementary Rules

(4.2) 1 father(X, Y) :-

2 parent(X, Y),

3 male(X).

4

5 mother(X, Y) :-

6 parent(X, Y),

7 female(X).

8
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9 child(X, Y) :-

10 parent(Y, X).

The rules in (4.2) can be read as follows:

• X is a father of Y if X is a parent of Y and X is male. Put differently: a father

is a male parent of a child.

• X is a mother of Y if X is a parent of Y and X is female. Or: a mother is a

female parent of a child.

• X is a child of Y if Y is a parent of X. This rule defines the inversion of the

parent relationship—a rule built on the given facts.

These rules allow us to query the world:

Querying

(4.3) 1 ?- father(X, Y).

2 X = john,

3 Y = zoe ;

4 X = john,

5 Y = matthew ;

6 false.

7

8 ?- father(X, zoe).

9 X = john ;

10 false.

Each set of bindings preceding a semi-colon in the above example is indicative

of a possible unification with the facts given in (4.1)—when interacting with Prolog

we hit the ; key to see whether anything else can satisfy our query. In the first
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query, father(X, Y), we ask Prolog to unify the terms X and Y with facts of the

world such that the query is true. Here we get two positive results before false is

returned—meaning that there are only two possible bindings. In the second query,

father(X, zoe), the same process applies but this time, since we have handed the

system Zoe’s name as a literal (rather than a variable to be bound like Y ), Prolog

has to satisfy X such that X is the father of Zoe. As such, the only binding for X

is john. Since Zoe only has one father, any attempt to resatisfy X by attempting a

different unification with the facts results in false.

4.1.3 Summary: Backtracking

Of central import for any learner is the property of backtracking: namely, the ability to

return to the last known true state and attempting to re-satisfy a query by following

a different path of logical inference. This generally involves rebinding variables and

employing a different rule (or: set of rules) to arrive at a satisfactory answer.

In that Prolog provides an inbuilt backtracking mechanism, it is a salient choice of

platform on which to build a system to infer underlying forms and phonological rules.

Where there are multiple possible analyses, the system can backtrack—hypothesising

different URs in the process—and hence arrive at alternative analyses for the relevant

rules operating in a paradigm.

By way of example, and in anticipation of explanations to come, we shall take a

look at an elementary paradigm which can be satisfied by more than one analysis:

Simple Paradigm Demo

(4.4) 1 surface_morpheme(demoLanguage, [g,a,b], ’dog’).

2 surface_morpheme(demoLanguage, [g,a,p], ’dog’).

3 surface_morpheme(demoLanguage, [g,a,b], ’cat’).

4 surface_morpheme(demoLanguage, [a], ’PL’).
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5

6 simpleDemo(Rules) :-

7 paradigm(

8 demoLanguage,

9 [

10 ’#+gab+a#’, dog,

11 ’#+gap+#’ , dog,

12 ’#+gab+a#’, cat,

13 ’#+gab+#’ , cat

14 ], _, _, _, Rules).

15

16 runSimpleDemo :-

17 findall(Rules,

18 (simpleDemo(Rules), format("Possibility:~n "),

19 print_fst_rules(Rules)), _).

The first four lines in this example are used to define surface alternants and

their associated glosses in demoLanguage. Next, we define a one-place predicate that

unifies for Rules by analysing a demoLanguage paradigm. The reason that we refer to

demoLanguage is to enable morpheme lookup during analysis. The paradigm that we’re

analysing contains four surface forms which will be analysed a pair at a time: gaba ∼

gap and gaba ∼ gab. The only information that we wish to draw from this analysis,

in this example, is the ordered ruleset which will be unified with Rules, the sixth

argument to paradigm(...). In this way, Rules will be bound and unified with the

simpleDemo(...) argument.

Calling the above query will yield the following set of possible analyses:

Possible Analyses

(4.5) 1 # swipl -f learner.pl -t runSimpleDemo

2
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3 Possibility:

4 /p/ [ -cor -dors -son -cont +lab -del -vc +cons ] --> [ +vc ] / __a

5 Possibility:

6 /p/ [ -cor -dors -son -cont +lab -del -vc +cons ] --> [ +vc ] / __a#

7 Possibility:

8 /p/ [ -cor -dors -son -cont +lab -del -vc +cons ] --> [ +vc ] / #ga__a

9 Possibility:

10 /p/ [ -cor -dors -son -cont +lab -del -vc +cons ] --> [ +vc ] / #ga__a#

11 Possibility:

12 /p/ [ -cor -dors -son -cont +lab -del -vc +cons ] --> [ +vc ] / a__a

13 Possibility:

14 /p/ [ -cor -dors -son -cont +lab -del -vc +cons ] --> [ +vc ] / a__a#

15 Possibility:

16 /p/ [ -cor -dors -son -cont +lab -del -vc +cons ] --> [ +vc ] / ga__a

17 Possibility:

18 /p/ [ -cor -dors -son -cont +lab -del -vc +cons ] --> [ +vc ] / ga__a#

The above output demonstrates the analyses compatible with this paradigm. The

focus segment, /p/, is a second-class object—the rule focus is actually the feature ma-

trix {−cor,−dors,−son,−cont, +lab,−del,−vc, +cons}. For our purposes, though,

it may be more convenient to consider an abbreviated form of this output, provided

in (4.6),

(4.6) • /p/ → [ +voice ] / a

• /p/ → [ +voice ] / a#

• /p/ → [ +voice ] / #ga a

• /p/ → [ +voice ] / #ga a#

• /p/ → [ +voice ] / a a
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• /p/ → [ +voice ] / a a#

• /p/ → [ +voice ] / ga a

• /p/ → [ +voice ] / ga a#

Only p → b is hypothesised for the alternating ‘dog’ form as a b → p rule would

behave incorrectly by overgenerating for ‘cat’. Consider any devoicing rule that has

/b/ as its focus. Since ‘cat’ does not alternate, only one underlying form will be

hypothesised. Now we need to ensure that devoicing applies only to the ‘dog’ form

but, problematically, ‘dog’ and ‘cat’ would have the same UR (since, by supposition,

the rule we are looking for devoices). If both ‘dog’ and ‘cat’ are underlyingly identical

and devoicing has applied in the surface form gap, then it should necessarily have

applied to the suffixless ‘cat’ form—but does not. In identical environments we have

gab and gap; clearly no devoicing rule could have applied here.

4.2 Representation

4.2.1 Features

A feature is simply defined as a Prolog fact. The attribute name is stored as an atom

and is, unsurprisingly, arbitrary. A simple inventory, used for our examples, follows:

Feature Inventory

(4.7) 1 feature(anterior).

2 feature(strident).

3 feature(sonorant).

4 feature(voice).

5 feature(nasal).

6 feature(lateral).

7 feature(continuant).
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8 feature(consonantal).

9 feature(distributed).

10 feature(delayed).

11 feature(dorsal).

12 feature(coronal).

13 feature(labial).

14 feature(high).

15 feature(low).

16 feature(back).

17 feature(round).

Definition of a feature’s sign follows the same basic principle making for the fol-

lowing concise definitions:

Sign Definition

(4.8) 1 sign(+).

2 sign(-).

3 sign(0).

Finally, as discussed in section (3.2.1), a feature specification is a tuple—namely,

a pair—built from a sign and attribute. As such, we define a phonological unit (i.e.,

the basic unit of specification) as follows:

Feature Inventory

(4.9) 1 unit(X,Y) :- sign(X), feature(Y).

This states that a pair (X,Y ) can be used to build a phonological unit so long as X

is a sign (i.e., X ∈ {∅, +,−}) and Y is a feature attribute as defined in (4.7). As

mentioned in (3.2.1), X = ∅ is used for despecifying units in a feature matrix—not

as a means of encoding underspecification.
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4.2.2 Segments

Segments are (linked) lists of feature specifications. Underspecification can be handled

through the omission of a specification (rather than a ternary specification slot).

Below is an example of a segment definition:

Segment /a/

(4.10) 1 segment(a, [ unit(-,high) , unit(-,back) ,

2 unit(+,low) , unit(-,round) ,

3 unit(+,sonorant) , unit(+,voice) ,

4 unit(-,consonantal) ] ).

Here we bind ‘a’ to a feature matrix. This is used for mapping between paradigm

inputs and the featural representations that underlie them.

It is taken as axiomatic that segments may be underspecified for certain features.

This seems to be a sensible allowance given the utility of underspecified segments in

accounting for vowel harmony cross-linguistically (Inkelas, 1994).

4.2.3 Representations

Representations are lists of feature bundles. In section (3.2.1) we discussed the notion

of implicit precedence in phonological representations. There we employed segment

names in the first box of each cons cell. For conveniently mapping between IPA

input and lists of matrices, we can leverage facts of the form segment(X,Y) by mapping

to a new list, unifying X with a segment in the input and writing out Y in its stead:

Mapping from segment names to matrices

(4.11) 1 as_matrices([],[]).

2 as_matrices([X|Xs], [Y|Ys]) :- segment(X,Y), as_matrices(Xs,Ys).
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The first line is the terminating condition—the empty list maps to itself—while

the second line maps an IPA segment name (X) to its definition (Y ) then recurses

by calling as_matrices/2 on the remainder of the representation.

4.2.4 Rules

Sterling and Shapiro (1994) provide a useful starting point for approaching finite state

computation in Prolog with a simple implementation of a finite state machine (FSM),

provided below.

accept(Xs) ←

The string represented by the list Xs is accepted by the NDFA

defined by initial/1, delta/3, and final/1.

accept(Xs) ← initial(Q), accept (Xs, Q).

accept([X|Xs], Q) ← delta(Q, X, Q1), accept(Xs, Q1).

accept([], Q) ← final(Q).

(Sterling & Shapiro, 1994, p. 320)

The left arrow (←) is equivalent to a Prolog operator that we have already en-

countered, ‘:-’. We can read the three rules as follows:

1. accept(Xs) is true if there is some initial state Q and accept(Xs, Q) is true.

• This rule takes a list of symbols (Xs), tries to locate a fact defining an

initial state Q and queries the two-place version of (accept/2). recognised.

2. accept([X|Xs], Q) is true if there is a transition (defined by delta/3) from the

current state, Q to some new state, Q1, that recognises the first symbol in the

input list, X.
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• If this is true, the clause recurses by calling accept(Xs, Q1)—i.e., does this

FSM accept the rest of the tokens starting from state Q1?

3. accept([], Q) is true if and only if Q is the final state.

• The input symbol list has been exhausted; this clause states that this is

only acceptable if the FSM has been left in its final state.

These three rules provide all the necessary machinery for building a recogniser.

All that remains is to define the transitions (using the delta predicate) and initial

and start states. For example, the following machine will accept (ab)∗:

FSM for (ab)*

(4.12) 1 initial(qO).

2 final(qO).

3 delta(qO,a,q1).

4 delta(ql,b,qO).

(Defined in Sterling & Shapiro, 1994, p. 321)

We can easily extend this scheme to provide a transduction mechanism by altering

the definitions of accept to expect an additional output tape, onto which rewritten

symbols are mapped, and amending our transition deltas to define which mapping to

affect at each state.

From FSM to FST

(4.13) 1 accept(Xs,Ys) :- initial(Q), accept(Xs, Ys, Q).

2 accept([X|Xs],[Y|Ys],Q) :- delta(Q,X,Y,Q1), accept(Xs,Ys,Q1).

3 accept([], [], Q) :- final(Q).

4

5 initial(q0).
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6 final(q0).

7 delta(q0,a,’A’,q1).

8 delta(q1,b,’B’,q0).

This transducer accepts the same inputs as the FSM given in (4.12) but addition-

ally maps a → A and b → B in the course of recognition:

Running the transducer

(4.14) 1 ?- accept([a,b,a,b], Output).

2 Output = [’A’, ’B’, ’A’, ’B’].

3

4 ?- accept([a,b,a], Output).

5 false.

6

7 ?- accept([a,b,a,b,a,b], Output).

8 Output = [’A’, ’B’, ’A’, ’B’, ’A’, ’B’].

We can represent this transducer as the graph in (4.15),

(4.15)

q0 q1

a:A

b:B

4.3 Deriving one segment from another

We shall begin this discussion by considering a simple raising problem, a → e (where

a is an italicised form of ‘a’, an open front unrounded vowel). Let us assume the

following featural mapping:

56



(4.16)
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Here, the feature matrices differ with respect to their specification of [αlow]. We can

frame the problem as follows: given a, which featural specifications will yield e? Our

first task is isolating the features that differ. This can be done by subtracting the

first matrix from the second to find the featural units not present in the first. We call

this process derive.

(4.17)
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= [−low]

A first draft of derive is presented below,

derive/3: first draft

(4.18) 1 derive(S1,S2,Specifications) :-

2 segment(S1, Bundle1),

3 segment(S2, Bundle2),

4 subtract(Bundle2, Bundle1, Specifications).
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As the parameter list indicates, derive expects three arguments: the first two are

symbolic names for segments—in this case, a and e. The third argument is bound by

subtracting the intersection of these bundles from the matrix for e. The example in

(4.17) is thus queried as follows,

Querying derive/3

(4.19) 1 ?- derive(a, e, Specifications).

2 Specifications = [unit(-, low)]

Now that we have the specifications present in the second bundle but absent from

the first (in this case, just the one), we apply these specifications to a by calling the

specifyMatrix predicate, notated below by the ⋒ operator.

(4.20) [−low] ⋒







































−high

−back

+ low

−round

+sonorant

+voice

−consonantal







































=







































−high

−back

− low

−round

+sonorant

+voice
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It is important to point out that we are not employing standard unification here—

by definition, two segments that differ by one or more feature cannot be unified.

Rather, specifyMatrix calls specify for each of the units in the set handed to it.

(4.21) A sketch of specify

1. If a matrix already contains the attribute being specified, alter its sign

specification such that the featural unit can be unified. This process can

be seen in (4.20).
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2. If a matrix is missing the specification of the featural unit being specified

(i.e., it is underspecified with respect to that feature), the specification is

unified (which amounts to union) with the matrix.

The specify predicate is identical with what Kaplan (1995) calls ‘priority union’

and similar to the ‘default unification’ of Lascarides et. al (1999). We shall explain

with reference Kaplan’s presentation:

For two f-structures [for us, feature matrices] A and B, ‘A/B’ is their

priority union, perhaps read as A given B, or A in the context of B. It

is the set of pairs 〈s, v〉 such that v is equal to the value of the attribute

s in the f-structure A, if s is in the domain of A, otherwise the value of

s in the f-structure B. the operator gives priority to the values in A but

anything that A doesn’t include gets filled in for B.

(Kaplan, 1995, p. 365, our italics)

To illustrate this, Kaplan offers the example reproduced here as (4.22),

(4.22) A =













q r

s t

u v













B =













q m

s t

p l













C =



















q r

s t

u v

p l



















The second column of each matrix is analogous to our phonological co-efficients,

the first column to feature attributes. Concluding his explanation, Kaplan clarifies

that

A/B gets 〈q, r〉 from A, ignoring what would be the inconsistent [coeffi-

cient] value of q in B, not even noticing it. 〈s, t〉 is common to both so

A/B includes that. It also has 〈u, v〉 from A and 〈p, l〉 from B.
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The basic idea is that values found in A override the values found in B,

and B supplies the defaults.

(Kaplan, 1995, p. 365)

We shall not adopt the oblique (‘/’) notation for specify, opting instead for ‘⋒’ to

represent priority union.

With the theoretical and formal meaning of the specify predicate established, let

us return to the details of its operation.

To show the second interpretation of specify—union in the case of absent specification—

let us assume that we wish to map a′ → e where a′ is underspecified with respect to

[αlow]. A matrix for a′ is provided in (4.23),

(4.23)

































−high

−back

−round

+sonorant

+voice

−consonantal

































As in (4.17), we subtract the bundle for a′ from e to find the features that need

to be specified for a′.

(4.24)







































−high

−back

−low

−round

+sonorant

+voice

−consonantal
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−high

−back

−round

+sonorant

+voice

−consonantal

































= [−low]
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Note that the absence of [αlow] from a′ doesn’t impact the resultant matrix—from

the perspective of finding features in need of specification, underspecification and sign

difference are equivalent. Either a feature needs to be specified due to it being absent

or it needs to be re-specified due to a sign change.

Calling [−low] ⋒ a is now equivalent to [−low] ∪ a:

(4.25) [−low] ⋒

































−high

−back

−round

+sonorant

+voice

−consonantal
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−high

−back

−low

−round

+sonorant

+voice

−consonantal







































≡

[−low] ∪

































−high

−back

−round

+sonorant

+voice

−consonantal
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−high

−back

−low

−round

+sonorant

+voice

−consonantal







































The approach presented so far poses a problem, however, when attempting to map

e → a′:
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(4.26)

































−high

−back

−round

+sonorant

+voice

−consonantal
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−high

−back

−low

−round

+sonorant

+voice

−consonantal







































= ∅

The problem is the following: while a′ ∩ e is equivalent to e ∩ a′, subtracting the

larger matrix from a′ results in the empty list—read as ‘nothing to specify’. This

would suggest that a′ = e (i.e., nothing needs specifying to map e → a′) which is

clearly not the case. Such a result would be encountered regularly in the course of

analysing a paradigm; by erroneously telling the learner that nothing needs specifying,

segments will be conflated and inference will run awry.

This issue results from derive having no knowledge of underspecification in its

analysis. To fix it, we need to step through an additional stage in which we check

for features that are specified in the source (focus) bundle but are absent from the

target.

derive/3: final draft

(4.27) 1 derive(S1,S2,Specifications) :-

2 segment(S1, Bundle1),

3 segment(S2, Bundle2),

4 missing_specifications(Bundle2, Bundle1, Absent),

5 subtract(Bundle2, Bundle1, Specs),

6 append(Specs, Absent, Specifications).

Now derive calls an additional predicate, missing_specifications, to see which

features are specified in Bundle1 but are absent from Bundle2, building an intermediate
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set. We union this set with the result of the subtraction to yield a final specifications

list. To express missing_specifications in set theoretic terms requires two mapping

operations—one from a domain of phonological units (defined as 〈sign, attribute〉

pairs) to a set of attributes and the second from a set of attributes back into a

codomain of 〈sign, attribute〉 where sign = ∅:

(4.28)
f : 〈S,A〉 → A

g : A → 〈∅, A〉

Specifications missing from Bundle2 can now be found by employing the intersec-

tion and subtraction method in attribute space. Units in the Absent set will be given

a sign value of ∅, indicating that they should be unspecified in order to arrive at the

correct target segment.

(4.29) Step 1:

































−high

−back

−round

+sonorant

+voice

−consonantal
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−high

−back

−low

−round

+sonorant

+voice

−consonantal







































= ∅

Step 2:
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missing_specifications(

































−high

−back

−round

+sonorant

+voice

−consonantal
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−high

−back

−low

−round

+sonorant

+voice

−consonantal







































) =

[∅low]

Result:

∅ ∪ [∅low] = [∅low]

We now need to refine our definition of specify to correctly interpret a ∅ sign:

(4.30) Revised sketch of specify

1. If a matrix already contains the attribute being specified, either:

• Remove the target unit if the sign of the item being specified is ∅

(demonstrated below in 4.31);

• Alter its sign specification such that the featural unit can be unified.

This process can be seen in (4.20).

2. If a matrix is missing the specification of the featural unit being specified

(i.e., it is underspecified with respect to that feature), the specification is

unioned with the matrix.

Mapping from e → a′ therefore yields the following,
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(4.31) [∅low] ⋒







































−high

−back

−low

−round

+sonorant

+voice

−consonantal
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−high

−back

−round

+sonorant

+voice

−consonantal

































It is important that we can assure segmental identity in this way for the purposes

of unifying hypotheses for different forms in a phonological paradigm. Specifying

a feature with a null sign is equivalent to despecification. In this case, ‘∅’ is a

symbol drawn from the metalanguage that removes attributes from the target bundle.

Such an operation exceeds the power of feature-filling unification models and can be

justified by the necessity of feature-changing phonological rules (Reiss, 2003).

Finally, here are the definitions for specify (we have left out insertion and deletion

for the time being),

specify/3: first draft

(4.32) 1 specify([], X, X).

2

3 specify(unit(+,F), [unit(-,F)|Units], Segment) :-

4 Segment = [unit(+,F)|Units].

5

6 specify(unit(-,F), [unit(+,F)|Units], Segment) :-

7 Segment = [unit(-,F)|Units].

8

9 specify(unit(0,F), [unit(_,F)|Units], Units) :- !.

10

11 specify(unit(S,F), [unit(S,F)|Units], [unit(S,F)|Units]).

65



12

13 specify(U, [X|Units], [X|Segment]) :-

14 specify(U, Units, Segment).

15

16 specify(Unit, [], [Unit]).

The first line indicates that attempting to specify nothing (the empty set, ∅)

results in identity of focus and target. The second and third clauses deal with sign

flipping when they reach a unit with the same attribute. The fourth clause on the

ninth line indicates that if we find the specified attribute we should remove it from

the set. The fifth clause indicates that if both sign and attribute match a specification

on the focus, this specification should carry over to the target. Finally, specifying a

unit on an empty set (a matrix with no specifications) yields a matrix with that unit.

4.3.1 changeTo: mapping derive

The preceding discussion dealt with single segment changes, irrespective of how many

features are involved in the act of specification. The next level of abstraction requires

an expansion of this functionality across this input string as whole, building an ordered

set of derivation paths, one for each segment. Where a segment exhibits identity, this

path will be of length zero—the null set, ∅. This task is achieved by the changeTo

and change predicates.

The changeTo/4 Predicate

(4.33) 1 changeTo([],[],[],[]).

2 changeTo([S1|Rep1],[S2|Rep2],[P|Xs],[U|Ys]) :-

3 derive(S1,S2,X),

4 U = S1,
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5 permutation(X, P),

6 changeTo(Rep1,Rep2,Xs,Ys).

The first definition of changeTo is its the terminating condition—it is true that the

null set can be changed into the null set with a null set of changes where the underlying

form of the input is also null. This is vacuously true. The second definition is the core

rule: we leverage derive to recursively infer a derivation set that can map between

strings. First, we find the derivation path from S1 to S2 and temporarily bind this as

X. S1 is stored as U—the underlying segment—and a permutation of X is stored as

the path for this segment. Finally, changeTo recurses with the remaining segments in

the input and output strings.

The role of permutation is best evidenced by an example of querying changeTo.

Consider the query in (4.34):

Exploring changeTo/4

(4.34) 1 ?- changeTo([a,g],[a,x],Changes, Underlying).

2 Changes = [[], [unit(+, continuant), unit(+, delayed), unit(-, voice)]],

3 Underlying = [a, g] ;

4

5 Changes = [[], [unit(+, delayed), unit(+, continuant), unit(-, voice)]],

6 Underlying = [a, g] ;

7

8 Changes = [[], [unit(+, delayed), unit(-, voice), unit(+, continuant)]],

9 Underlying = [a, g] ;

10

11 Changes = [[], [unit(+, continuant), unit(-, voice), unit(+, delayed)]],

12 Underlying = [a, g] ;

13

14 Changes = [[], [unit(-, voice), unit(+, continuant), unit(+, delayed)]],
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15 Underlying = [a, g] ;

16

17 Changes = [[], [unit(-, voice), unit(+, delayed), unit(+, continuant)]],

18 Underlying = [a, g] ;

19 false.

If we consider the second term in Changes to be an unordered set, all results can be

considered equivalent; permutations would be irrelevant. Importantly, though, these

derivation paths are being permuted as ordered sets. The first binding states that

mapping a → a can be achieved with an empty derivation path (no changes need to

be made to arrive at the target) and that g → x can be achieved by the sequences

given in (4.35, 4.36, etc.).

(4.35) g → [+continuant] → [+delayed] → [−voice] = x

(4.36) g → [+delayed] → [+continuant] → [−voice] = x

By hypothesising all possible orders in which these features can be specified we can

make the ordering task much easier. The adjacency of [+delayed] and [+continuant]

in (4.36) needn’t manifest in an ordered derivation—by permuting at this stage, we

are simply providing higher levels of inference with information for performing the

ordering operation.

4.3.2 change: abstracting changeTo

The change predicate essentially leverages changeTo after preprocessing for correspon-

dence and alignment. Specially demarcated substrings of the inputs are fed through

changeTo and then recombined with the appropriate prefix and suffix information as

a post-processing step.
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Discussing the definition of this predicate is unnecessary for comprehending the

functionality of the learner as whole; what is necessary, however, is a brief discussion

of alignment and correspondence concerns that are crucial for inference to function

correctly.

4.4 Alignment

4.4.1 Correspondence

Knowledge of correspondence is fundamental for building an accurate learning system.

First, consider the following chart for the surface alternation #tag# ∼ #tak#:

(4.37)

# t a g #

m m m m m

# t a k #

Here there is a one-to-one correspondence between segments and we note that g ∼

k. This case is obviously contrived: there is no reason to focus on the voicing difference

between /g/ and /k/ as they fall in the same environment and are therefore not

actually alternating. Let us therefore extend (4.37) to a more plausible comparison,

the surface alternation #taga# ∼ #tak# where −a is a suffix. A first approximation

is given in (4.38):

(4.38)

# t a g a #

m m m m m

# t a k #

What this (erroneous) chart shows is that in the absence of additional information—

or an algorithm—the suffix of the first form will correspond with the word boundary

symbol of the second. This in turn yields the absurd statement a ∼ #. The simplest
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solution to the problem is to frame the substring of inputs that should be compared.

In other words, as in (4.38), we are interested in the alternation in the stem; the suffix

is irrelevant to locating the alternation, though it will of course be indispensable for

building possible rule environments at a later stage of analysis.

In order to frame material for correspondence comparison, we employ ‘+’ symbols

in the input. These essentially demarcate the window in which correspondence should

occur.

(4.39)

# + t a g + a #

m m m

# + t a k + #

From this correspondence we localise alternations and infer that g ∼ k.

4.4.2 Realignment

In cases of deletion and insertion, the above correspondence is still problematic. Con-

sider #pat# ∼ #paa# where −a is a suffix:

(4.40)

# + p a t + #

m m m

# + p a + a #

Even with our + markers, alignment is incorrect; now we have t ∼ + which

is both incorrect and exhibits a mixing of symbol types—segment with boundary

marker. The solution to this problem involves the inference of a null segment, ǫ, to

correspond with the t:

(4.41)

# + p a t + #

m m m

# + p a ǫ + a #
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This is the task of realign/3, shown in (4.42), a predicate that inserts ǫ in one of

the two (framed) forms when input lengths differ.

Segment Realignment Predicates

(4.42) 1 realign([], [], []).

2 realign([], [_|_], [0]).

3 realign([X|Stem1], [Y|Stem2], [0|Align1]) :-

4 X \= Y, realign([X|Stem1], Stem2, Align1).

5 realign([X|Stem1], [X|Stem2], [X|Align1]) :-

6 realign(Stem1, Stem2, Align1).

7

8 adjust_alignment(Stem1, Stem2, Stem1, Align2) :-

9 length(Stem1, L1), length(Stem2, L2),

10 L1 > L2, !, realign(Stem2, Stem1, Align2).

11

12 adjust_alignment(Stem1, Stem2, Align1, Stem2) :-

13 length(Stem1, L1), length(Stem2, L2),

14 L1 < L2, !, realign(Stem1, Stem2, Align1).

15

16 adjust_alignment(Stem1, Stem2, Stem1, Stem2).

4.5 Rules

Rules are inferred in two steps—the first involves building lists for foci, change and en-

vironment; the second involves a translation of these lists into transducers for further

evaluation.
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4.5.1 FSTs

Finite-state transducers are built dynamically from rule structures for two explicit

purposes:

1. They make rule composition convenient;

2. They provide a means for efficiently and effectively testing inferred rules across

a paradigm as the last step in satisfying a query.

(4.43) A Finite-State Transducer is a 6-tuple (Σ1, Σ2, Q, i, F, E) such that:

• Σ1 is a finite alphabet, namely the input alphabet

• Σ2 is a finite alphabet, namely the output alphabet

• Q is a finite set of states

• i ∈ Q is the initial state

• F ⊆ Q is the set of final states

• E ⊆ Q × Σ∗

1 × Σ∗

2 × Q is the set of edges

(Drawn from Roche & Shabes, 1997, p. 14)

Defining inferable transducers requires a few minor modifications to the code

outlined in (4.13). The core predicates are listed in (4.44),

Transducers

(4.44) 1 transduce(FST,Xs,Ys) :-

2 initial(FST,Q), transduce(FST, Xs, Ys, Q).

3

4 transduce(FST,[X|Xs],[Y|Ys],Q) :-

5 delta(FST,Q,X,Y,Q1), transduce(FST,Xs,Ys,Q1).

6
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7 transduce(FST, [], [], Q) :-

8 final(FST,Q), !.

The transduce/3 predicate provides a toplevel input; it looks up the initial state,

Q for the transducer in question—information provided by unifying with FST—and

calls transduce/4 to map a string of Xs to Y s. This latter predicate, transduce/4, tries

to find a transition—via delta/5—that, given the current state Q, defines a mapping

from X to Y . If such an arc exists, the machine will be placed into a new state, Q1,

and the operation recurses.

Transduction terminates when three conditions hold:

1. The input tape is empty,

2. The output tape is empty,

3. The machine is in a state Q that is a member of the final states.

The predicates in (4.44) only provide the architecture for transduction; in order

to see them operating we need to define a new machine on their basis. Given that we

wish to have transducers inferred, we avoid hard-coding facts about them in general

(unlike the example in (4.13)), instead marking the component parts of an FST

dynamic.

Making dynamic transducers

(4.45) 1 :- dynamic initial/2.

2 :- dynamic final/2.

3 :- dynamic delta/5.

The goal of this approach is to produce rules akin to the depiction in (4.46), a

transducer graph representing the phonological rule g → k / #.
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(4.46)
q0 q1 q2 q3

#:#

*:*

g:k #:#

This transducer begins by matching the word-boundary symbol on the input tape

and mapping it to itself, consuming the symbol in the process. We shall call the

identity mapping self-mapping. If the first symbol on the input tape is not the word-

boundary symbol, recognition fails and the transducer rejects its input. If on the

other hand the mapping succeeds, the machine changes state: q0 → q1. In q1 the ‘*’

symbol indicates a wildcard match—any segment will map to itself (identity holds).

When this transition is followed, no state change occurs. If the entirety of the input

tape is exhausted while still on q1, mapping will fail as q1 is not a member of the set

of final states. If the machine encounters a ‘g’ on the input tape, it has the option

of mapping it to ‘k’ and in so doing changes state again, this time q1 → q2. State

q2 requires that the very next symbol be a word boundary symbol which is again

self-mapped to reach the final state, q3. In the event that the symbol following ‘g’

is not the word-boundary symbol, recognition will fail and the g → k mapping will

effectively not have applied.

To allow for failed mappings to truly correlate with inapplicable rules, we require

a fall through condition that allows inputs to be self-mapped across the board. If,

however, a mapping is possible, we want to ensure that it has to apply and that we

cannot employ the fall through. As such, upon reaching the final state of the mapping

transducer we block the possibility of trying the identity rule with the cut operator,

‘!’. This states that once the transduction has succeeded, backtracking is no longer

possible. The transducer/4 predicate is therefore abstracted as run_transducer/3, listed

in (4.47):
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Running a transducer indirectly

(4.47) 1 run_transducer(FST, Input, Output) :-

2 initial(FST, Q),

3 transduce(FST, Input, Output, Q), !.

4

5 run_transducer(_, Input, Input).

An objection might be raised that states q0 and q1 don’t have correlates in the

phonological rule which they are supposed to be encoding. This is only true in a very

superficial sense: notice that the first transition requires that the input begin with a

boundary symbol—this is simply a way of requiring well-formed input strings. The

loop transition on q1, by contrast, is actually implicit in the g → k rule itself. Its

absence (with or without the inclusion of q0) would require the first symbol on the

input tape to be g—which is not what we want at all. Rather, the rule as written

translates to the following: ignore everything before a g in the input and when you

locate one, rewrite it as k when preceding #. Ignoring material before g is the job of

the wildcard mapping on q1.

A more pressing concern with the above discussion should be over the choice of

symbols (or indeed, their type) on the input and output tapes—namely the use of

orthography in representing a velar obstruent (see §3.3.3). Nothing especially theo-

retical is captured by this transducer: no reference is made to the features comprising

g, nor to the fact that this mapping represents the process of word final devoicing. Let

us therefore begin by proposing a simple but feature-theoretic version of the original

rule,
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(4.48)













































−coronal

+dorsal

−sonorant

−continuant

−labial

−delayed

+voice

+consonantal













































→

[

−voice

]

/ #

Our choice of features for encoding g is unimportant here—relevant, though, is

that our transduction model should be capable of representing rules that transcend

the orthographic. Unsurprisingly, it can. To do so, the transition rule for g : k must

do two things:

1. Match the symbol at the head of the input tape to a feature bundle (using the

subset relation);

2. Employ the ⋒ operator to force a specification of [+voice].

(4.49)
q0 q1 q2 q3

#:#

*:*

X:Y ← (















































−cor

+dor

−son

−cont

−lab

−del

+vc

+cons















































⊆ X) ∧ (Y ⊔ (X ⋒ [+voice]))

#:#
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In this rather clumsy depiction, we see that X maps to Y so long as the subset

relation holds for X; if it does, Y is the result of calling specifyMatrix/3 on X.

A nice result of this approach is that the transducer can be generalised in a way

not possible for (4.46): by taking a subset of the matrix for g, we can adapt the FST

such that it is triggered for all voiced obstruents:

(4.50)
q0 q1 q2 q3

#:#

*:*

X:Y ← (













−son

+vc

+cons













⊆ X) ∧ (Y ⊔ (X ⋒ [+voice]))

#:#

This approach therefore provides ample flexibility for capturing natural classes in rule

foci.

4.6 Glossing

Glossing tells the learner which alternating surface forms should be derived from

the same underlying form—through the unification of a form’s gloss, the engine can

hypothesise an appropriate UR.

The most direct way of explaining the necessity of glossing comes from neutrali-

sation cases such as the one supplied in (4.51) below.

(4.51)

Surface Form Gloss

gap a dog

gaba the dog

gap a cat

gapa the cat
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Given that both ‘dog’ and ‘cat’ can surface as gap we need to ensure that in

accounting for the alternation gap ∼ gaba, ‘dog’ is inferred to be underlyingly gab

(with word-final devoicing) and differentiated from the form for ‘cat’. In the absence

of glossing we could still infer that the only plausible rule is b → p but there would be

no way of associating this with a particular form; furthermore, building more complex

derivations would be impossible.

4.6.1 Surface Morphemes—surface morpheme/3

The engine provides a simple predicate, surface_morpheme, for defining facts about

surface forms and their glosses. The predicate is dynamic, meaning that facts can

be defined outside of the inference engine’s core codebase. Its definition is trivial,

provided in (4.52):

Dynamic gloss predicate

(4.52) 1 :- dynamic(surface_morpheme/3).

This dynamic fact is employed indirectly by another predicate, underlying_identity,

for ensuring that underlying forms are unified for a given gloss.

4.7 The Paradigm

Having described the building blocks of our system we can now turn to its toplevel

input, the phonological paradigm. For us, a paradigm consists of a list of surface

forms paired with their glosses. These glosses correspond with a substring of the

representation bounded by + markers.

Consider the following toy language in (4.53):
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Language A

(4.53) 1 surface_morpheme(langA, [g,a,b], ’dog’).

2 surface_morpheme(langA, [g,a,p], ’dog’).

3 surface_morpheme(langA, [a], ’the’).

4 surface_morpheme(langA, [i], ’PL’).

5

6 langA :- paradigm(

7 langA,

8 [

9 ’#+gap+#’ , dog,

10 ’#+gab+a#’, dog,

11 ’#+gap+#’ , dog,

12 ’#+gab+i#’, dog

13 ], Underlying, Surface, Lexicon, Rules),

14 lang_info(Underlying, Surface, Lexicon, Rules).

Our definition begins with a preamble listing glosses for surface morphemes1 in-

dependent of the context in which they are found. It is assumed by this layer of

the system, then, that morphological information can be extracted from phonologi-

cally unanalysed surface forms prior to rule inference. This assumption might well

prove to be untenable but it is not difficult to conceive of a ‘preprocessor’ step in

which the information explicitly provided by surface_morpheme facts could be inferred

automatically.

For now, we can read the surface_morpheme/3 definitions as follows:

• In langA, the noun dog can surface as /gab/;

• In langA, the noun dog can also surface as /gap/;

1Ideally, this step would be automated—for clarity, we have left such morphological analysis to
the linguist/programmer employing this system.
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• In langA, the determiner the surfaces as /a/;

• In langA, the plural marker surfaces as /i/.

Next, a zero place predicate, langA, is defined (while terms unify within the rule

body, langA has no arguments); this is a rule that evaluates to true so long as four

variables can be bound by paradigm: Underlying, Surface, Lexicon and Rules. For

convenience we conjoin a final term to print these variables in a well-formatted (and

hence human-readable) fashion.

A query over this paradigm, therefore, should yield an analysis that provides a

single underlying form for ‘dog’ given that it surfaces with two different phonological

forms. Furthermore, since this is the only morpheme that exhibits surface alternation,

nothing needs to be said for the determiner or plural marker; as such, we don’t provide

them as inputs for analysis by marking them in the input. (It is trivial to do so, but

the resulting output contains redundant mapping information.)

In order to obtain an analysis, we simply feed langA in as a query:

Querying Language A

(4.54) 1 ?- langA.

2 Rules

3 -----

4 /p/ [ -cor -dors -son -cont +lab -del -vc +cons ] --> [ +vc ] / __a

5 /p/ [ -cor -dors -son -cont +lab -del -vc +cons ] --> [ +vc ] / __i

6 Mappings

7 --------

8 #gap# => #gap#

9 #gapa# => #gaba#

10 #gap# => #gap#

11 #gapi# => #gabi#

12 Lexicon
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13 -------

14 gap => ’dog’

15

16 [...]

The Prolog engine has returned the simplest possible analysis of the paradigm,

suggesting that two rules are involved in accounting for the surface alternation p ∼ b.

Our ‘lexicon’ indicates that the underlying form for the only alternant provided in the

paradigm, ‘dog’, is /gap/. Note that the absence of /i/ and /a/ is a consequence of

those morphemes not being subjected to paradigmatic analysis—our lexicon merely

collects the forms that we are interested in accounting for phonologically. Here, the

alternation is explained through two rules, both with a focus of p and structural

change of [+voice]: The two inferred rules are:

(4.55)
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/ a
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(4.56)
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/ i

These rules are ordered, although here rule interaction is irrelevant to the analysis.

The ellipsis on line 16 of (4.54) has been added to indicate that this solution is only

one of many. Hitting ; immediately yields an analysis involving the opposite rule

ordering, as in (4.57):

Querying Language A: Backtrack 1

(4.57) 1 Rules

2 -----

3 /p/ [ -cor -dors -son -cont +lab -del -vc +cons ] --> [ +vc ] / __i

4 /p/ [ -cor -dors -son -cont +lab -del -vc +cons ] --> [ +vc ] / __a

5 Mappings

6 --------

7 #gap# => #gap#

8 #gapa# => #gaba#

9 #gap# => #gap#

10 #gapi# => #gabi#

11 Lexicon

12 -------

13 gap => ’dog’
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Ordering is irrelevant to this paradigm and the system correctly recognises this

fact. Subsequent re-analyses involve adjustments to the rule environments posited

for the rules given in (4.55–4.56) such as in (4.58),

Querying Language A: Backtrack 2

(4.58) 1 Rules

2 -----

3 /p/ [ -cor -dors -son -cont +lab -del -vc +cons ] --> [ +vc ] / __a

4 /p/ [ -cor -dors -son -cont +lab -del -vc +cons ] --> [ +vc ] / __i#

5 Mappings

6 --------

7 #gap# => #gap#

8 #gapa# => #gaba#

9 #gap# => #gap#

10 #gapi# => #gabi#

11 Lexicon

12 -------

13 gap => ’dog’

before positing the opposite direction of mapping, b → p (4.59):

Querying Language A: Reverse Mapping

(4.59) 1 Rules

2 -----

3 /b/ [ -cor -dors -son -cont +lab -del +vc +cons ] --> [ -vc ] / __#

4 Mappings

5 --------

6 #gab# => #gap#

7 #gaba# => #gaba#

8 #gab# => #gap#

9 #gabi# => #gabi#
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10 Lexicon

11 -------

12 gab => ’dog’

Again, the simplest (smallest) environment is hypothesised first, followed by all

possible environments.

4.7.1 Incremental Checks

A final stage of the learning process worth mentioning is the incremental checking

that takes place in the course of inferring underlying forms and derivations. Ordered

rules from the current hypothesis are regularly checked against the entire paradigm

such that bad analyses are ruled out as early as possible and backtracking can be

triggered. This occurs in the course of paradigm analysis, a process that is split

into multiple levels and handed to sub-predicates (paradigm4, paradigm3, paradigm2,

paradigm1).

Checking works very simply: for each entry in the paradigm, underlying forms

and rules are inferred. Let us assume that there are three pairs (six forms) provided

for comparison. Once the first pair has been compared, a set of rules (transducers)

will have been inferred. These transducers are then tested against the next pair in

the paradigm—if they make incorrect predictions they are illicit and backtracking to

the first pair occurs. We now attempt to find a new rule that can account for these

alternations and proceed once more to the second pair. Permutation (re-ordering) is

one possible way of satisfying the conditions placed on the paradigm by transducer

checks and in this way we get feeding and bleeding orders.
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4.8 Further Work, Current Problems

The model presented in this chapter demonstrates the type of learning that can be

achieved using surface alternation as the learner’s only criterion for inferring rules

and underlying forms. In discussing Tesar’s work on learning from paradigmatic

information (2006), we ruled out phonotactic information as a possible guide for our

learner for reasons of parsimony. One possible amendment to the learning model

we present above would be to compare its analyses with that of a phonotactically

driven system and to use empirical tests to ascertain where phonotactic information

produces more coherent analyses. Such comparison would be helpful in narrowing

our focus to those problematic cases and addressing more directly why phonotactics

has been chosen as integral to phonological models.

A further source of implementation and inquiry could investigate the phenomenon

of ‘free rides’ much discussed in the (OT) literature. McCarthy (2004) presents the

problem as follows,

When alternation data tell the learner that some surface [B]s are derived

from underlying /A/s, the learner will under certain conditions generalize

by deriving all [B]s, even nonalternating ones, from /A/s. An adequate

learning theory must therefore incorporate a procedure that allows non-

alternating [B]s to take a “free ride” on the /A/ → [B] unfaithful map.

(McCarthy, 2004, Abstract)

If free rides play a strong role in the acquisition process, it would seem wise to

incorporate such tendencies of over-generalisation into a phonological learning model.

Since we have attempted the simplest possible model (both in terms of first principles

and implementational considerations), free rides play no explicit role in our model. It
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would be very interesting to explore first the degree of over-generalisation currently

evidenced by our system and then experiment with different degrees of generalisation

in hypothesising underlying forms. This would provide an elegant means for inte-

grating recent work in Optimality learning with serialist frameworks such as the one

presented in this paper.
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Chapter 5
Examples

5.1 Deletion

Problems with deletion—in particular, correspondence—were covered in (§4.4.1).

Here we provide a simple paradigm to demonstrate the learner’s analysis. The input

to the learner is the following paradigm:

(5.1)

Surface Form Gloss

a. to dog

b. tolgi the dog

c. to hat

d. togi the hat

From the above we can see that -gi is the suffix for the definite article and neu-

tralisation occurs on the indeterminate forms for ‘dog’ and ‘hat’. The paradigm can

be transcribed as follows:

Deletion Example

1 surface_morpheme(deletionLanguage, [t,o] , ’dog’).

2 surface_morpheme(deletionLanguage, [t,o,l], ’dog’).
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3 surface_morpheme(deletionLanguage, [t,o] , ’hat’).

4 surface_morpheme(deletionLanguage, [t,o] , ’hat’).

5 surface_morpheme(deletionLanguage, [g,i] , ’the’).

6

7 deletionLanguage :- paradigm(

8 deletionLanguage,

9 [

10 ’#+to+#’ , dog,

11 ’#+tol+gi#’, dog,

12 ’#+to+#’ , hat,

13 ’#+to+gi#’, hat

14 ], Underlying, Surface, Lexicon, Rules),

15 lang_info(Underlying, Surface, Lexicon, Rules).

16

17 goDeletionLanguage :- findall(_, deletionLanguage, _).

Submitting this paradigm to he leaner results in the following analysis:

Deletion Analysis

1

2 Rules

3 -----

4 /0/ NULL --> [ +cor -dors -son -cont -lab +ant -nas +lat +vc +cons ] / __g

5 Mappings

6 --------

7 #to# => #to#

8 #togi# => #tolgi#

9 #to# => #to#

10 #togi# => #togi#

11 Lexicon

12 -------

13 to => ’hat’
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14 to => ’dog’

15

16 Rules

17 -----

18 /0/ NULL --> [ +cor -dors -son -cont -lab +ant -nas +lat +vc +cons ] / __gi

19 Mappings

20 --------

21 #to# => #to#

22 #togi# => #tolgi#

23 #to# => #to#

24 #togi# => #togi#

25 Lexicon

26 -------

27 to => ’hat’

28 to => ’dog’

29

30 Rules

31 -----

32 /0/ NULL --> [ +cor -dors -son -cont -lab +ant -nas +lat +vc +cons ] / o__g

33 Mappings

34 --------

35 #to# => #to#

36 #togi# => #tolgi#

37 #to# => #to#

38 #togi# => #togi#

39 Lexicon

40 -------

41 to => ’hat’

42 to => ’dog’

43

44 Rules
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45 -----

46 /0/ NULL --> [ +cor -dors -son -cont -lab +ant -nas +lat +vc +cons ] / o__gi

47 Mappings

48 --------

49 #to# => #to#

50 #togi# => #tolgi#

51 #to# => #to#

52 #togi# => #togi#

53 Lexicon

54 -------

55 to => ’hat’

56 to => ’dog’

57

58 Rules

59 -----

60 /0/ NULL --> [ +cor -dors -son -cont -lab +ant -nas +lat +vc +cons ] / to__g

61 Mappings

62 --------

63 #to# => #to#

64 #togi# => #tolgi#

65 #to# => #to#

66 #togi# => #togi#

67 Lexicon

68 -------

69 to => ’hat’

70 to => ’dog’

71

72 Rules

73 -----

74 /0/ NULL --> [ +cor -dors -son -cont -lab +ant -nas +lat +vc +cons ] / to__gi

75 Mappings
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76 --------

77 #to# => #to#

78 #togi# => #tolgi#

79 #to# => #to#

80 #togi# => #togi#

81 Lexicon

82 -------

83 to => ’hat’

84 to => ’dog’

85

86 [...]

87

88 Rules

89 -----

90 /l/ [ +cor -dors -son -cont -lab +ant -nas +lat +vc +cons ] --> 0 / __#

91 Mappings

92 --------

93 #tol# => #to#

94 #tolgi# => #tolgi#

95 #to# => #to#

96 #togi# => #togi#

97 Lexicon

98 -------

99 to => ’hat’

100 tol => ’dog’

101

102 Rules

103 -----

104 /l/ [ +cor -dors -son -cont -lab +ant -nas +lat +vc +cons ] --> 0 / o__#

105 Mappings

106 --------
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107 #tol# => #to#

108 #tolgi# => #tolgi#

109 #to# => #to#

110 #togi# => #togi#

111 Lexicon

112 -------

113 to => ’hat’

114 tol => ’dog’

115

116 Rules

117 -----

118 /l/ [ +cor -dors -son -cont -lab +ant -nas +lat +vc +cons ] --> 0 / to__#

119 Mappings

120 --------

121 #tol# => #to#

122 #tolgi# => #tolgi#

123 #to# => #to#

124 #togi# => #togi#

125 Lexicon

126 -------

127 to => ’hat’

128 tol => ’dog’

129

5.2 Ordering Example

This toy language—based loosely on Lamba—illustrates a crucial ordering when rule

environments are local. (Only when the left and right environments are made very

specific is a difference in ordering possible.) The input for our analysis is as follows:
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(5.2)

Surface Form Gloss

a. fiswa the dog

b. fiSika some dogs

c. fiSila my dog

d. fisana your dog

e. tulwa the cat

f. tulana your cat

g. tulika some cats

h. tulila my cat

i. tesela my desk

We transcribe the above paradigm as follows, repeating some rows to focus on

either stem or suffix alternation:

Ordering Example

1 surface_morpheme(orderingExample, [f,i,S], ’dog’).

2 surface_morpheme(orderingExample, [f,i,s], ’dog’).

3 surface_morpheme(orderingExample, [t,u,l], ’cat’).

4 surface_morpheme(orderingExample, [t,e,s], ’desk’).

5 surface_morpheme(orderingExample, [i,k,a], ’PL’).

6 surface_morpheme(orderingExample, [i,l,a], ’my’).

7 surface_morpheme(orderingExample, [e,l,a], ’my’).

8 surface_morpheme(orderingExample, [a,n,a], ’your’).

9 surface_morpheme(orderingExample, [w,a], ’the’).

10

11 orderingExample :- paradigm(

12 orderingExample,

13 [

14 ’#+fis+wa#’, dog,

15 ’#+fiS+ika#’, dog,
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16 ’#+fiS+ila#’, dog,

17 ’#+fis+ana#’ , dog,

18 ’#+tul+wa#’, cat,

19 ’#+tul+ana#’, cat,

20 ’#+tul+ika#’, cat,

21 ’#+tul+ila#’, cat,

22 ’#tul+ana+#’, your,

23 ’#fis+ana+#’, your,

24 ’#tes+ela+#’, my,

25 ’#tul+ila+#’, my,

26 ’#tul+ila+#’, my,

27 ’#fiS+ila+#’, my

28 ], Underlying, Surface, Lexicon, Rules),

29 lang_info(Underlying, Surface, Lexicon, Rules).

30

31 goOrderingExample :- findall(_, orderingExample, _).

Querying with the toplevel goOrderingExample yields the following (note that θ has

been rendered /T/ due to limitations in unicode representation):

Ordering Analysis

1 Rules

2 -----

3 /i/ [ +hi -bk -lo -rd +son +vc -cons ] --> [ -hi ] / es__

4 /s/ [ +cor -dors -son +cont -lab -dist +del +ant -vc +cons ] --> [ +dist ] / __i

5 /T/ [ +cor -dors -son +cont -lab +dist +del +ant -vc +cons ] --> [ -ant ] / __i

6 Mappings

7 --------

8 #fiswa# => #fiswa#

9 #fisika# => #fiSika#

10 #fisila# => #fiSila#

11 #fisana# => #fisana#
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12 #tulwa# => #tulwa#

13 #tulana# => #tulana#

14 #tulika# => #tulika#

15 #tulila# => #tulila#

16 #tulana# => #tulana#

17 #fisana# => #fisana#

18 #tesila# => #tesela#

19 #tulila# => #tulila#

20 #tulila# => #tulila#

21 #fisila# => #fiSila#

22 Lexicon

23 -------

24 ila => ’my’

25 ana => ’your’

26 tul => ’cat’

27 fis => ’dog’

28

29 Rules

30 -----

31 /i/ [ +hi -bk -lo -rd +son +vc -cons ] --> [ -hi ] / es__l

32 /s/ [ +cor -dors -son +cont -lab -dist +del +ant -vc +cons ] --> [ +dist ] / __i

33 /T/ [ +cor -dors -son +cont -lab +dist +del +ant -vc +cons ] --> [ -ant ] / __i

34 Mappings

35 --------

36 #fiswa# => #fiswa#

37 #fisika# => #fiSika#

38 #fisila# => #fiSila#

39 #fisana# => #fisana#

40 #tulwa# => #tulwa#

41 #tulana# => #tulana#

42 #tulika# => #tulika#
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43 #tulila# => #tulila#

44 #tulana# => #tulana#

45 #fisana# => #fisana#

46 #tesila# => #tesela#

47 #tulila# => #tulila#

48 #tulila# => #tulila#

49 #fisila# => #fiSila#

50 Lexicon

51 -------

52 ila => ’my’

53 ana => ’your’

54 tul => ’cat’

55 fis => ’dog’

56

57 Rules

58 -----

59 /i/ [ +hi -bk -lo -rd +son +vc -cons ] --> [ -hi ] / es__la

60 /s/ [ +cor -dors -son +cont -lab -dist +del +ant -vc +cons ] --> [ +dist ] / __i

61 /T/ [ +cor -dors -son +cont -lab +dist +del +ant -vc +cons ] --> [ -ant ] / __i

62 Mappings

63 --------

64 #fiswa# => #fiswa#

65 #fisika# => #fiSika#

66 #fisila# => #fiSila#

67 #fisana# => #fisana#

68 #tulwa# => #tulwa#

69 #tulana# => #tulana#

70 #tulika# => #tulika#

71 #tulila# => #tulila#

72 #tulana# => #tulana#

73 #fisana# => #fisana#
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74 #tesila# => #tesela#

75 #tulila# => #tulila#

76 #tulila# => #tulila#

77 #fisila# => #fiSila#

78 Lexicon

79 -------

80 ila => ’my’

81 ana => ’your’

82 tul => ’cat’

83 fis => ’dog’

84

85 Rules

86 -----

87 /s/ [ +cor -dors -son +cont -lab -dist +del +ant -vc +cons ] --> [ +dist ] / fi__i

88 /T/ [ +cor -dors -son +cont -lab +dist +del +ant -vc +cons ] --> [ -ant ] / fi__i

89 /i/ [ +hi -bk -lo -rd +son +vc -cons ] --> [ -hi ] / es__

90 Mappings

91 --------

92 #fiswa# => #fiswa#

93 #fisika# => #fiSika#

94 #fisila# => #fiSila#

95 #fisana# => #fisana#

96 #tulwa# => #tulwa#

97 #tulana# => #tulana#

98 #tulika# => #tulika#

99 #tulila# => #tulila#

100 #tulana# => #tulana#

101 #fisana# => #fisana#

102 #tesila# => #tesela#

103 #tulila# => #tulila#

104 #tulila# => #tulila#
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105 #fisila# => #fiSila#

106 Lexicon

107 -------

108 ila => ’my’

109 ana => ’your’

110 tul => ’cat’

111 fis => ’dog’

112

113 Rules

114 -----

115 /s/ [ +cor -dors -son +cont -lab -dist +del +ant -vc +cons ] --> [ +dist ] / fi__i

116 /i/ [ +hi -bk -lo -rd +son +vc -cons ] --> [ -hi ] / es__

117 /T/ [ +cor -dors -son +cont -lab +dist +del +ant -vc +cons ] --> [ -ant ] / fi__i

118 Mappings

119 --------

120 #fiswa# => #fiswa#

121 #fisika# => #fiSika#

122 #fisila# => #fiSila#

123 #fisana# => #fisana#

124 #tulwa# => #tulwa#

125 #tulana# => #tulana#

126 #tulika# => #tulika#

127 #tulila# => #tulila#

128 #tulana# => #tulana#

129 #fisana# => #fisana#

130 #tesila# => #tesela#

131 #tulila# => #tulila#

132 #tulila# => #tulila#

133 #fisila# => #fiSila#

134 Lexicon

135 -------
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136 ila => ’my’

137 ana => ’your’

138 tul => ’cat’

139 fis => ’dog’

140

141 Rules

142 -----

143 /i/ [ +hi -bk -lo -rd +son +vc -cons ] --> [ -hi ] / es__

144 /s/ [ +cor -dors -son +cont -lab -dist +del +ant -vc +cons ] --> [ +dist ] / fi__i

145 /T/ [ +cor -dors -son +cont -lab +dist +del +ant -vc +cons ] --> [ -ant ] / fi__i

146 Mappings

147 --------

148 #fiswa# => #fiswa#

149 #fisika# => #fiSika#

150 #fisila# => #fiSila#

151 #fisana# => #fisana#

152 #tulwa# => #tulwa#

153 #tulana# => #tulana#

154 #tulika# => #tulika#

155 #tulila# => #tulila#

156 #tulana# => #tulana#

157 #fisana# => #fisana#

158 #tesila# => #tesela#

159 #tulila# => #tulila#

160 #tulila# => #tulila#

161 #fisila# => #fiSila#

162 Lexicon

163 -------

164 ila => ’my’

165 ana => ’your’

166 tul => ’cat’
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167 fis => ’dog’

168

169 Rules

170 -----

171 /s/ [ +cor -dors -son +cont -lab -dist +del +ant -vc +cons ] --> [ +dist ] / fi__i

172 /T/ [ +cor -dors -son +cont -lab +dist +del +ant -vc +cons ] --> [ -ant ] / fi__i

173 /i/ [ +hi -bk -lo -rd +son +vc -cons ] --> [ -hi ] / es__l

174 Mappings

175 --------

176 #fiswa# => #fiswa#

177 #fisika# => #fiSika#

178 #fisila# => #fiSila#

179 #fisana# => #fisana#

180 #tulwa# => #tulwa#

181 #tulana# => #tulana#

182 #tulika# => #tulika#

183 #tulila# => #tulila#

184 #tulana# => #tulana#

185 #fisana# => #fisana#

186 #tesila# => #tesela#

187 #tulila# => #tulila#

188 #tulila# => #tulila#

189 #fisila# => #fiSila#

190 Lexicon

191 -------

192 ila => ’my’

193 ana => ’your’

194 tul => ’cat’

195 fis => ’dog’

196

197 Rules
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198 -----

199 /s/ [ +cor -dors -son +cont -lab -dist +del +ant -vc +cons ] --> [ +dist ] / fi__i

200 /i/ [ +hi -bk -lo -rd +son +vc -cons ] --> [ -hi ] / es__l

201 /T/ [ +cor -dors -son +cont -lab +dist +del +ant -vc +cons ] --> [ -ant ] / fi__i

202 Mappings

203 --------

204 #fiswa# => #fiswa#

205 #fisika# => #fiSika#

206 #fisila# => #fiSila#

207 #fisana# => #fisana#

208 #tulwa# => #tulwa#

209 #tulana# => #tulana#

210 #tulika# => #tulika#

211 #tulila# => #tulila#

212 #tulana# => #tulana#

213 #fisana# => #fisana#

214 #tesila# => #tesela#

215 #tulila# => #tulila#

216 #tulila# => #tulila#

217 #fisila# => #fiSila#

218 Lexicon

219 -------

220 ila => ’my’

221 ana => ’your’

222 tul => ’cat’

223 fis => ’dog’

224

225 Rules

226 -----

227 /i/ [ +hi -bk -lo -rd +son +vc -cons ] --> [ -hi ] / es__l

228 /s/ [ +cor -dors -son +cont -lab -dist +del +ant -vc +cons ] --> [ +dist ] / fi__i
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229 /T/ [ +cor -dors -son +cont -lab +dist +del +ant -vc +cons ] --> [ -ant ] / fi__i

230 Mappings

231 --------

232 #fiswa# => #fiswa#

233 #fisika# => #fiSika#

234 #fisila# => #fiSila#

235 #fisana# => #fisana#

236 #tulwa# => #tulwa#

237 #tulana# => #tulana#

238 #tulika# => #tulika#

239 #tulila# => #tulila#

240 #tulana# => #tulana#

241 #fisana# => #fisana#

242 #tesila# => #tesela#

243 #tulila# => #tulila#

244 #tulila# => #tulila#

245 #fisila# => #fiSila#

246 Lexicon

247 -------

248 ila => ’my’

249 ana => ’your’

250 tul => ’cat’

251 fis => ’dog’

252

253 Rules

254 -----

255 /s/ [ +cor -dors -son +cont -lab -dist +del +ant -vc +cons ] --> [ +dist ] / fi__i

256 /T/ [ +cor -dors -son +cont -lab +dist +del +ant -vc +cons ] --> [ -ant ] / fi__i

257 /i/ [ +hi -bk -lo -rd +son +vc -cons ] --> [ -hi ] / es__la

258 Mappings

259 --------
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260 #fiswa# => #fiswa#

261 #fisika# => #fiSika#

262 #fisila# => #fiSila#

263 #fisana# => #fisana#

264 #tulwa# => #tulwa#

265 #tulana# => #tulana#

266 #tulika# => #tulika#

267 #tulila# => #tulila#

268 #tulana# => #tulana#

269 #fisana# => #fisana#

270 #tesila# => #tesela#

271 #tulila# => #tulila#

272 #tulila# => #tulila#

273 #fisila# => #fiSila#

274 Lexicon

275 -------

276 ila => ’my’

277 ana => ’your’

278 tul => ’cat’

279 fis => ’dog’

280

281 Rules

282 -----

283 /s/ [ +cor -dors -son +cont -lab -dist +del +ant -vc +cons ] --> [ +dist ] / fi__i

284 /i/ [ +hi -bk -lo -rd +son +vc -cons ] --> [ -hi ] / es__la

285 /T/ [ +cor -dors -son +cont -lab +dist +del +ant -vc +cons ] --> [ -ant ] / fi__i

286 Mappings

287 --------

288 #fiswa# => #fiswa#

289 #fisika# => #fiSika#

290 #fisila# => #fiSila#
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291 #fisana# => #fisana#

292 #tulwa# => #tulwa#

293 #tulana# => #tulana#

294 #tulika# => #tulika#

295 #tulila# => #tulila#

296 #tulana# => #tulana#

297 #fisana# => #fisana#

298 #tesila# => #tesela#

299 #tulila# => #tulila#

300 #tulila# => #tulila#

301 #fisila# => #fiSila#

302 Lexicon

303 -------

304 ila => ’my’

305 ana => ’your’

306 tul => ’cat’

307 fis => ’dog’

308

309 Rules

310 -----

311 /i/ [ +hi -bk -lo -rd +son +vc -cons ] --> [ -hi ] / es__la

312 /s/ [ +cor -dors -son +cont -lab -dist +del +ant -vc +cons ] --> [ +dist ] / fi__i

313 /T/ [ +cor -dors -son +cont -lab +dist +del +ant -vc +cons ] --> [ -ant ] / fi__i

314 Mappings

315 --------

316 #fiswa# => #fiswa#

317 #fisika# => #fiSika#

318 #fisila# => #fiSila#

319 #fisana# => #fisana#

320 #tulwa# => #tulwa#

321 #tulana# => #tulana#
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322 #tulika# => #tulika#

323 #tulila# => #tulila#

324 #tulana# => #tulana#

325 #fisana# => #fisana#

326 #tesila# => #tesela#

327 #tulila# => #tulila#

328 #tulila# => #tulila#

329 #fisila# => #fiSila#

330 Lexicon

331 -------

332 ila => ’my’

333 ana => ’your’

334 tul => ’cat’

335 fis => ’dog’

336

337 Rules

338 -----

339 /s/ [ +cor -dors -son +cont -lab -dist +del +ant -vc +cons ] --> [ +dist ] / fi__i

340 /T/ [ +cor -dors -son +cont -lab +dist +del +ant -vc +cons ] --> [ -ant ] / fi__i

341 /i/ [ +hi -bk -lo -rd +son +vc -cons ] --> [ -hi ] / s__

342 Mappings

343 --------

344 #fiswa# => #fiswa#

345 #fisika# => #fiSika#

346 #fisila# => #fiSila#

347 #fisana# => #fisana#

348 #tulwa# => #tulwa#

349 #tulana# => #tulana#

350 #tulika# => #tulika#

351 #tulila# => #tulila#

352 #tulana# => #tulana#
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353 #fisana# => #fisana#

354 #tesila# => #tesela#

355 #tulila# => #tulila#

356 #tulila# => #tulila#

357 #fisila# => #fiSila#

358 Lexicon

359 -------

360 ila => ’my’

361 ana => ’your’

362 tul => ’cat’

363 fis => ’dog’

364

365 Rules

366 -----

367 /s/ [ +cor -dors -son +cont -lab -dist +del +ant -vc +cons ] --> [ +dist ] / fi__i

368 /i/ [ +hi -bk -lo -rd +son +vc -cons ] --> [ -hi ] / s__

369 /T/ [ +cor -dors -son +cont -lab +dist +del +ant -vc +cons ] --> [ -ant ] / fi__i

370 Mappings

371 --------

372 #fiswa# => #fiswa#

373 #fisika# => #fiSika#

374 #fisila# => #fiSila#

375 #fisana# => #fisana#

376 #tulwa# => #tulwa#

377 #tulana# => #tulana#

378 #tulika# => #tulika#

379 #tulila# => #tulila#

380 #tulana# => #tulana#

381 #fisana# => #fisana#

382 #tesila# => #tesela#

383 #tulila# => #tulila#
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384 #tulila# => #tulila#

385 #fisila# => #fiSila#

386 Lexicon

387 -------

388 ila => ’my’

389 ana => ’your’

390 tul => ’cat’

391 fis => ’dog’

392

393 Rules

394 -----

395 /s/ [ +cor -dors -son +cont -lab -dist +del +ant -vc +cons ] --> [ +dist ] / fi__i

396 /T/ [ +cor -dors -son +cont -lab +dist +del +ant -vc +cons ] --> [ -ant ] / fi__i

397 /i/ [ +hi -bk -lo -rd +son +vc -cons ] --> [ -hi ] / s__l

398 Mappings

399 --------

400 #fiswa# => #fiswa#

401 #fisika# => #fiSika#

402 #fisila# => #fiSila#

403 #fisana# => #fisana#

404 #tulwa# => #tulwa#

405 #tulana# => #tulana#

406 #tulika# => #tulika#

407 #tulila# => #tulila#

408 #tulana# => #tulana#

409 #fisana# => #fisana#

410 #tesila# => #tesela#

411 #tulila# => #tulila#

412 #tulila# => #tulila#

413 #fisila# => #fiSila#

414 Lexicon
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415 -------

416 ila => ’my’

417 ana => ’your’

418 tul => ’cat’

419 fis => ’dog’

420

421 Rules

422 -----

423 /s/ [ +cor -dors -son +cont -lab -dist +del +ant -vc +cons ] --> [ +dist ] / fi__i

424 /i/ [ +hi -bk -lo -rd +son +vc -cons ] --> [ -hi ] / s__l

425 /T/ [ +cor -dors -son +cont -lab +dist +del +ant -vc +cons ] --> [ -ant ] / fi__i

426 Mappings

427 --------

428 #fiswa# => #fiswa#

429 #fisika# => #fiSika#

430 #fisila# => #fiSila#

431 #fisana# => #fisana#

432 #tulwa# => #tulwa#

433 #tulana# => #tulana#

434 #tulika# => #tulika#

435 #tulila# => #tulila#

436 #tulana# => #tulana#

437 #fisana# => #fisana#

438 #tesila# => #tesela#

439 #tulila# => #tulila#

440 #tulila# => #tulila#

441 #fisila# => #fiSila#

442 Lexicon

443 -------

444 ila => ’my’

445 ana => ’your’
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446 tul => ’cat’

447 fis => ’dog’

448

449 [...]
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